3.7E: Exercises for Section 7.7
- Last updated
- May 24, 2023
- Save as PDF
- Page ID
- 130091
- Gilbert Strang & Edwin “Jed” Herman
- OpenStax
( \newcommand{\kernel}{\mathrm{null}\,}\)
In exercises 1 - 8, evaluate the following integrals. If the integral is not convergent, answer “It diverges.”
1) ∫42dx(x−3)2
- Answer
- It diverges.
2) ∫∞014+x2dx
3) ∫201√4−x2dx
- Answer
- Converges to π2
4) ∫∞11xlnxdx
5) ∫∞1xe−xdx
- Answer
- Converges to 2e
6) ∫∞−∞xx2+1dx
7) Without integrating, determine whether the integral ∫∞11√x3+1dx converges or diverges by comparing the function f(x)=1√x3+1 with g(x)=1√x3.
- Answer
- It converges.
8) Without integrating, determine whether the integral ∫∞11√x+1dx converges or diverges.
In exercises 9 - 25, determine whether the improper integrals converge or diverge. If possible, determine the value of the integrals that converge.
9) ∫∞0e−xcosxdx
- Answer
- Converges to 12.
10) ∫∞1lnxxdx
11) ∫10lnx√xdx
- Answer
- Converges to −4.
12) ∫10lnxdx
13) ∫∞−∞1x2+1dx
- Answer
- Converges to π.
14) ∫51dx√x−1
15) ∫2−2dx(1+x)2
- Answer
- It diverges.
16) ∫∞0e−xdx
17) ∫∞0sinxdx
- Answer
- It diverges.
18) ∫∞−∞ex1+e2xdx
19) ∫10dx3√x
- Answer
- Converges to 1.5.
20) ∫20dxx3
21) ∫2−1dxx3
- Answer
- It diverges.
22) ∫10dx√1−x2
23) ∫301x−1dx
- Answer
- It diverges.
24) ∫∞15x3dx
25) ∫535(x−4)2dx
- Answer
- It diverges.
In exercises 26 and 27, determine the convergence of each of the following integrals by comparison with the given integral. If the integral converges, find the number to which it converges.
26) ∫∞1dxx2+4x; compare with ∫∞1dxx2.
27) ∫∞1dx√x+1; compare with ∫∞1dx2√x.
- Answer
- Both integrals diverge.
In exercises 28 - 38, evaluate the integrals. If the integral diverges, answer “It diverges.”
28) ∫∞1dxxe
29) ∫10dxxπ
- Answer
- It diverges.
30) ∫10dx√1−x
31) ∫10dx1−x
- Answer
- It diverges.
32) ∫0−∞dxx2+1
33) ∫1−1dx√1−x2
- Answer
- Converges to π.
34) ∫10lnxxdx
35) ∫e0ln(x)dx
- Answer
- Converges to 0.
36) ∫∞0xe−xdx
37) ∫∞−∞x(x2+1)2dx
- Answer
- Converges to 0.
38) ∫∞0e−xdx
In exercises 39 - 44, evaluate the improper integrals. Each of these integrals has an infinite discontinuity either at an endpoint or at an interior point of the interval.
39) ∫90dx√9−x
- Answer
- Converges to 6.
40) ∫1−27dxx2/3
41) ∫30dx√9−x2
- Answer
- Converges to π2.
42) ∫246dtt√t2−36
43) ∫40xln(4x)dx
- Answer
- Converges to 8ln(16)−4.
44) ∫30x√9−x2dx
45) Evaluate ∫t.5dx√1−x2. (Be careful!) (Express your answer using three decimal places.)
- Answer
- Converges to about 1.047.
46) Evaluate ∫41dx√x2−1. (Express the answer in exact form.)
47) Evaluate ∫∞2dx(x2−1)3/2.
- Answer
- Converges to −1+2√3.
48) Find the area of the region in the first quadrant between the curve y=e−6x and the x-axis.
49) Find the area of the region bounded by the curve y=7x2, the x-axis, and on the left by x=1.
- Answer
- A=7.0 units.2
50) Find the area under the curve y=1(x+1)3/2, bounded on the left by x=3.
51) Find the area under y=51+x2 in the first quadrant.
- Answer
- A=5π2 units.2
52) Find the volume of the solid generated by revolving about the x-axis the region under the curve y=3x from x=1 to x=∞.
53) Find the volume of the solid generated by revolving about the y-axis the region under the curve y=6e−2x in the first quadrant.
- Answer
- V=3πunits3
54) Find the volume of the solid generated by revolving about the x-axis the area under the curve y=3e−x in the first quadrant.
The Laplace transform of a continuous function over the interval [0,∞) is defined by F(s)=∫∞0e−sxf(x)dx (see the Student Project). This definition is used to solve some important initial-value problems in differential equations, as discussed later. The domain of F is the set of all real numbers s such that the improper integral converges. Find the Laplace transform F of each of the following functions and give the domain of F.
55) f(x)=1
- Answer
- 1s,s>0
56) f(x)=x
57) f(x)=cos(2x)
- Answer
- ss2+4,s>0
58) f(x)=eax
59) Use the formula for arc length to show that the circumference of the circle x2+y2=1 is 2π.
- Answer
- Answers will vary.
A function is a probability density function if it satisfies the following definition: ∫∞−∞f(t)dt=1. The probability that a random variable x lies between a and b is given by P(a≤x≤b)=∫baf(t)dt.
60) Show that f(x)={0,ifx<07e−7x,ifx≥0 is a probability density function.
61) Find the probability that x is between 0 and 0.3. (Use the function defined in the preceding problem.) Use four-place decimal accuracy.
- Answer
- 0.8775