2.7E: Exercises for Section 2.7
- Page ID
- 57426
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1) Draw a number line, then plot the numbers \(4,3,-4,7 / 8\), and \(−8/3\) on your number line. Label each point with its value. Finally, list the numbers in order, from smallest to largest.
- Answer
-
2) Draw a number line, then plot the numbers \(5,3,-4,5 / 7\), and \(−4/3\) on your number line. Label each point with its value. Finally, list the numbers in order, from smallest to largest.
3) Draw a number line, then plot the numbers \(-5,5,4,2 / 3\), and \(8/3\) on your number line. Label each point with its value. Finally, list the numbers in order, from smallest to largest.
- Answer
-
4) Draw a number line, then plot the numbers \(-3,-2,4,1 / 3\), and \(5/2\) on your number line. Label each point with its value. Finally, list the numbers in order, from smallest to largest.
In Exercises 5-20, shade each of the following sets on a number line.
5) \(\{x \, | \, x \geq-7\}\)
- Answer
-
6) \(\{x \, | \, x \geq-1\}\)
7) \(\{x \, | \, x<2\}\)
- Answer
-
8) \(\{x \, | \, x<-6\}\)
9) \((-\infty, 2)\)
- Answer
-
10) \((-\infty,-9)\)
11) \((6, \infty)\)
- Answer
-
12) \((5, \infty)\)
13) \(\{x \, | \, x>7\}\)
- Answer
-
14) \(\{x \, | \, x>-8\}\)
15) \([0, \infty)\)
- Answer
-
16) \([7, \infty)\)
17) \(\{x \, | \, x \leq-2\}\)
- Answer
-
18) \(\{x \, | \, x \leq 7\}\)
19) \((-\infty, 3]\)
- Answer
-
20) \((-\infty,-1]\)
In Exercises 21-28, use set-builder notation to describe the shaded region on the given number line.
21)

- Answer
-
\(\{x \, | \, x \leq 9\}\)
22)

23)

- Answer
-
\(\{x \, | \, x<-8\}\)
24)

25)

- Answer
-
\(\{x \, | \, x>-2\}\)
26)

27)

- Answer
-
\(\{x \, | \, x \geq-3\}\)
28)

In Exercises 29-36, use interval notation to describe the shaded region on the given number line.
29)

- Answer
-
\((4, \infty)\)
30)

31)

- Answer
-
\((-\infty,-2)\)
32)

33)

- Answer
-
\((-\infty, 5]\)
34)

35)

- Answer
-
\([1, \infty)\)
36)

In Exercises 37-44, solve each of the given inequalities. Sketch the solution on a number line, then use set-builder and interval notation to describe your solution.
37) \(x+10<19\)
- Answer
-
\((-\infty, 9)\)
38) \(x+17 \geq 7\)
39) \(4 x<8\)
- Answer
-
\((-\infty, 2)\)
40) \(16 x \geq-2\)
41) \(-2 x \leq-2\)
- Answer
-
\([1, \infty)\)
42) \(-18 x>-20\)
43) \(x-18>-10\)
- Answer
-
\((8, \infty)\)
44) \(x-8 \leq-18\)
In Exercises 45-62, solve each of the given inequalities. Sketch the solution on a number line, then use set-builder and interval notation to describe your solution.
45) \(-5 x-6 \geq 4-9 x\)
- Answer
-
\([5 / 2, \infty)\)
46) \(2 x-7 \geq-3-4 x\)
47) \(16 x-6 \leq 18\)
- Answer
-
\((-\infty, 3 / 2]\)
48) \(8 x-14 \leq-12\)
49) \(-14 x-6 \geq-10-4 x\)
- Answer
-
\((-\infty, 2 / 5]\)
50) \(-13 x-4 \geq-2-5 x\)
51) \(5 x+18<38\)
- Answer
-
\((-\infty, 4)\)
52) \(9 x+16<79\)
53) \(-16 x-5 \geq-11-6 x\)
- Answer
-
\((-\infty, 3 / 5]\)
54) \(-11 x-7 \geq-15-5 x\)
55) \(2 x-9 \geq 5-8 x\)
- Answer
-
\([7 / 5, \infty)\)
56) \(-3 x-6 \geq-2-9 x\)
57) \(-10 x-4 \leq 18\)
- Answer
-
\([-11 / 5, \infty)\)
58) \(-6 x-14 \leq 1\)
59) \(-12 x+4<-56\)
- Answer
-
\((5, \infty)\)
60) \(-18 x+6<-12\)
61) \(15 x+5<6 x+2\)
- Answer
-
\((-\infty,-1 / 3)\)
62) \(12 x+8<3 x+5\)
In Exercises 63-76, solve each of the given inequalities. Sketch the solution on a number line, then use set-builder and interval notation describe your solution.
63) \(\dfrac{3}{2} x>\dfrac{9}{8}\)
- Answer
-
\((3 / 4, \infty)\)
64) \(\dfrac{6}{7} x>\dfrac{3}{4}\)
65) \(x+\dfrac{3}{2}<\dfrac{9}{5}\)
- Answer
-
\((-\infty, 3 / 10)\)
66) \(x+\dfrac{1}{4}<-\dfrac{1}{5}\)
67) \(\dfrac{4}{7}-\dfrac{1}{6} x \leq \dfrac{4}{3} x-\dfrac{1}{2}\)
- Answer
-
\([5 / 7, \infty)\)
68) \(\dfrac{5}{3}-\dfrac{3}{4} x \leq \dfrac{7}{4} x-\dfrac{3}{5}\)
69) \(x-\dfrac{3}{8} \geq-\dfrac{9}{7}\)
- Answer
-
\([-51 / 56, \infty)\)
70) \(x-\dfrac{7}{2} \geq \dfrac{1}{5}\)
71) \(\dfrac{6}{5} x \leq-\dfrac{4}{7}\)
- Answer
-
\([10 / 21, \infty)\)
72) \(\dfrac{4}{3} x \leq \dfrac{2}{9}\)
73) \(-\dfrac{6}{5} x-\dfrac{7}{3} \leq \dfrac{5}{9}-\dfrac{2}{9} x\)
- Answer
-
\([-65 / 22, \infty)\)
74) \(-\dfrac{3}{7} x-\dfrac{1}{2} \leq \dfrac{3}{2}-\dfrac{2}{7} x\)
75) \(\dfrac{9}{7} x+\dfrac{9}{2}>\dfrac{1}{7} x+\dfrac{7}{2}\)
- Answer
-
\((-7 / 8, \infty)\)
76) \(\dfrac{5}{7} x+\dfrac{9}{2}>\dfrac{1}{3} x+\dfrac{5}{2}\)
In Exercises 77-84, solve each of the given inequalities. Sketch the solution on a number line, then use set-builder and interval notation containing fractions in reduced form to describe your solution.
77) \(-3.7 x-1.98 \leq 3.2\)
- Answer
-
\([-7 / 5, \infty)\)
78) \(-3.6 x-3.32 \leq 0.8\)
79) \(-3.4 x+3.5 \geq 0.9-2.2 x\)
- Answer
-
\((-\infty, 13 / 6]\)
80) \(-2.6 x+3.1 \geq-2.9-1.7 x\)
81) \(-1.3 x+2.9>-2.6-3.3 x\)
- Answer
-
\((-11 / 4, \infty)\)
82) \(2.5 x+2.1>1.4-3.8 x\)
83) \(2.2 x+1.9<-2.3\)
- Answer
-
\((-\infty,-21 / 11)\)
84) \(1.6 x+1.2<1.6\)
Contributors and Attributions
David Arnold (Retired Professor (Mathematics) at College of the Redwoods)