Practice Makes Perfect
Find an Equation of the Line Given the Slope and y-Intercept
In the following exercises, find the equation of a line with given slope and y-intercept. Write the equation in slope-intercept form.
1. slope \(3\) and \(y\)-intercept \((0,5)\)
- Answer
-
\(y=3x+5\)
2. slope \(8\) and \(y\)-intercept \((0,−6)\)
3. slope \(−3\) and \(y\)-intercept \((0,−1)\)
- Answer
-
\(y=−3x−1\)
4. slope \(−1\) and \(y\)-intercept \((0,3)\)
5. slope \(\frac{1}{5}\) and \(y\)-intercept \((0,−5)\)
- Answer
-
\(y=\frac{1}{5}x−5\)
6. slope \(−\frac{3}{4}\) and \(y\)-intercept \((0,−2)\)
7. slope \(0\) and \(y\)-intercept \((0,−1)\)
- Answer
-
\(y=−1\)
8. slope \(−4\) and \(y\)-intercept \((0,0)\)
In the following exercises, find the equation of the line shown in each graph. Write the equation in slope-intercept form.
9.

- Answer
-
\(y=3x−5\)
10.

11.

- Answer
-
\(y=\frac{1}{2}x−3\)
12.

13.

- Answer
-
\(y=−\frac{4}{3}x+3\)
14.

15.

- Answer
-
\(y=−2\)
16.

Find an Equation of the Line Given the Slope and a Point
In the following exercises, find the equation of a line with given slope and containing the given point. Write the equation in slope-intercept form.
17. \(m=\frac{5}{8}\), point \((8,3)\)
- Answer
-
\(y=\frac{5}{8}x−2\)
18. \(m=\frac{5}{6}\), point \((6,7)\)
19. \(m=−\frac{3}{5}\), point \((10,−5)\)
- Answer
-
\(y=−\frac{3}{5}x+1\)
20. \(m=−\frac{3}{4}\), point \((8,−5)\)
21. \(m=−\frac{3}{2}\), point \((−4,−3)\)
- Answer
-
\(y=−\frac{3}{2}x+9\)
22. \(m=−\frac{5}{2}\), point \((−8,−2)\)
23. \(m=−7\), point \((−1,−3)\)
- Answer
-
\(y=−7x−10\)
24. \(m=−4\), point \((−2,−3)\)
25. Horizontal line containing \((−2,5)\)
- Answer
-
\(y=5\)
26. Horizontal line containing \((−2,−3)\)
27. Horizontal line containing \((−1,−7)\)
- Answer
-
\(y=−7\)
28. Horizontal line containing \((4,−8)\)
Find an Equation of the Line Given Two Points
In the following exercises, find the equation of a line containing the given points. Write the equation in slope-intercept form.
29. \((2,6)\) and \((5,3)\)
- Answer
-
\(y=−x+8\)
30. \((4,3)\) and \((8,1)\)
31. \((−3,−4)\) and \((5−2)\).
- Answer
-
\(y=\frac{1}{4}x−\frac{13}{4}\)
32. \((−5,−3)\) and \((4,−6)\).
33. \((−1,3)\) and \((−6,−7)\).
- Answer
-
\(y=2x+5\)
34. \((−2,8)\) and \((−4,−6)\).
35. \((0,4)\) and \((2,−3)\).
- Answer
-
\(y=−\frac{7}{2}x+4\)
36. \((0,−2)\) and \((−5,−3)\).
37. \((7,2)\) and \((7,−2)\).
- Answer
-
\(x=7\)
38. \((−2,1)\) and \((−2,−4)\).
39. \((3,−4)\) and \((5,−4)\).
- Answer
-
\(y=−4\)
40. \((−6,−3)\) and \((−1,−3)\)
Find an Equation of a Line Parallel to a Given Line
In the following exercises, find an equation of a line parallel to the given line and contains the given point. Write the equation in slope-intercept form.
41. line \(y=4x+2\), point \((1,2)\)
- Answer
-
\(y=4x−2\)
42. line \(y=−3x−1\), point \(2,−3)\).
43. line \(2x−y=6\), point \((3,0)\).
- Answer
-
\(y=2x−6\)
44. line \(2x+3y=6\), point \((0,5)\).
45. line \(x=−4\), point \((−3,−5)\).
- Answer
-
\(x=−3\)
46. line \(x−2=0\), point \((1,−2)\)
47. line \(y=5\), point \((2,−2)\)
- Answer
-
\(y=−2\)
48. line \(y+2=0\), point \((3,−3)\)
Find an Equation of a Line Perpendicular to a Given Line
In the following exercises, find an equation of a line perpendicular to the given line and contains the given point. Write the equation in slope-intercept form.
49. line \(y=−2x+3\), point \((2,2)\)
- Answer
-
\(y=\frac{1}{2}x+1\)
50. line \(y=−x+5\), point \((3,3)\)
51. line \(y=\frac{3}{4}x−2\), point \((−3,4)\)
- Answer
-
\(y=−\frac{4}{3}x\)
52. line \(y=\frac{2}{3}x−4\), point \((2,−4)\)
53. line \(2x−3y=8\), point \((4,−1)\)
- Answer
-
\(y=−\frac{3}{2}x+5\)
54. line \(4x−3y=5\), point \((−3,2)\)
55. line \(2x+5y=6\), point \((0,0)\)
- Answer
-
\(y=\frac{5}{2}x\)
56. line \(4x+5y=−3\), point \((0,0)\)
57. line \(x=3\), point \((3,4)\)
- Answer
-
\(y=4\)
58. line \(x=−5\), point \((1,−2)\)
59. line \(x=7\), point \((−3,−4)\)
- Answer
-
\(y=−4\)
60. line \(x=−1\), point \((−4,0)\)
61. line \(y−3=0\), point \((−2,−4)\)
- Answer
-
\(x=−2\)
62. line \(y−6=0\), point \((−5,−3)\)
63. line \(y\)-axis, point \((3,4)\)
- Answer
-
\(y=4\)
64. line \(y\)-axis, point \((2,1)\)
Mixed Practice
In the following exercises, find the equation of each line. Write the equation in slope-intercept form.
65. Containing the points \((4,3)\) and \((8,1)\)
- Answer
-
\(y=−\frac{1}{2}x+5\)
66. Containing the points \((−2,0)\) and \((−3,−2)\)
67. \(m=\frac{1}{6}\), containing point \((6,1)\)
- Answer
-
\(y=\frac{1}{6}x\)
68. \(m=\frac{5}{6}\), containing point \((6,7)\)
69. Parallel to the line \(4x+3y=6\), containing point \((0,−3)\)
- Answer
-
\(y=−\frac{4}{3}x−3\)
70. Parallel to the line \(2x+3y=6\), containing point \((0,5)\)
71. \(m=−\frac{3}{4}\), containing point \((8,−5)\)
- Answer
-
\(y=−\frac{3}{4}x+1\)
72. \(m=−\frac{3}{5}\), containing point \((10,−5)\)
73. Perpendicular to the line \(y−1=0\), point \((−2,6)\)
- Answer
-
\(x=−2\)
74. Perpendicular to the line y-axis, point \((−6,2)\)
75. Parallel to the line \(x=−3\), containing point \((−2,−1)\)
- Answer
-
\(x=−2\)
76. Parallel to the line \(x=−4\), containing point \((−3,−5)\)
77. Containing the points \((−3,−4)\) and \((2,−5)\)
- Answer
-
\(y=−\frac{1}{5}x−\frac{23}{5}\)
78. Containing the points \((−5,−3)\) and \((4,−6)\)
79. Perpendicular to the line \(x−2y=5\), point \((−2,2)\)
- Answer
-
\(y=−2x−2\)
80. Perpendicular to the line \(4x+3y=1\), point \((0,0)\)