Practice Makes Perfect
Use the Vertical Line Test
In the following exercises, determine whether each graph is the graph of a function.
1. ⓐ
ⓑ

- Answer
-
ⓐ no ⓑ yes
2. ⓐ
ⓑ

3. ⓐ
ⓑ

- Answer
-
ⓐ no ⓑ yes
4. ⓐ
ⓑ

Identify Graphs of Basic Functions
In the following exercises, ⓐ graph each function ⓑ state its domain and range. Write the domain and range in interval notation.
5. \(f(x)=3x+4\)
- Answer
-
ⓐ
ⓑ \( D:(-\inf ,\inf ),\space R:(-\inf ,\inf ) \)
7. \(f(x)=−x−2\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ),\space R:(-\inf ,\inf )\)
9. \(f(x)=−2x+2\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ),\space R:(-\inf ,\inf )\)
11. \(f(x)=\frac{1}{2}x+1\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ),\space R:(-\inf ,\inf )\)
12. \(f(x)=\frac{2}{3}x−2\)
13. \(f(x)=5\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ), R:{5}\)
15. \(f(x)=−3\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ),\space R: {−3}\)
17. \(f(x)=2x\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ),\space R:(-\inf ,\inf )\)
19. \(f(x)=−2x\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ), R:(-\inf ,\inf )\)
21. \(f(x)=3x^2\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ),\space R:[0,\inf )\)
23. \(f(x)=−3x^2\)
- Answer
-
ⓐ
ⓑ \( D: (-\inf ,\inf ),\space R:(-\inf ,0]\)
25. \(f(x)=12x^2\)
- Answer
-
ⓐ
ⓑ \(D: (-\inf ,\inf ),\space R:[-\inf ,0)\)
26. \(f(x)=\frac{1}{3}x^2\)
27. \(f(x)=x^2−1\)
- Answer
-
ⓐ
ⓑ \(D: (-\inf ,\inf ),\space R:[−1, \inf )\)
29. \(f(x)=−2x^3\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ),\space R:(-\inf ,\inf )\)
31. \(f(x)=x^3+2\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ), R:(-\inf ,\inf )\)
33. \(f(x)=2\sqrt{x}\)
- Answer
-
ⓐ
ⓑ \(D:[0,\inf ), R:[0,\inf )\)
35. \(f(x)=\sqrt{x-1}\)
- Answer
-
ⓐ
ⓑ \(D:[1,\inf ), R:[0,\inf )\)
37. \(f(x)=3|x|\)
- Answer
-
ⓐ
ⓑ \(D:[ −1,−1, \inf ), R:[−\inf ,\inf )\)
39. \(f(x)=|x|+1\)
- Answer
-
ⓐ
ⓑ \(D:(-\inf ,\inf ), R:[1,\inf )\)
Read Information from a Graph of a Function
In the following exercises, use the graph of the function to find its domain and range. Write the domain and range in interval notation.
41.

- Answer
-
\(D: [2,\inf ),\space R: [0,\inf )\)
42.

43.

- Answer
-
\(D: (-\inf ,\inf ),\space R: [4,\inf )\)
44.

45.

- Answer
-
\(D: [−2,2],\space R: [0, 2]\)
46.

In the following exercises, use the graph of the function to find the indicated values.
47.

ⓐ Find: \(f(0)\).
ⓑ Find: \(f(12\pi)\).
ⓒ Find: \(f(−32\pi)\).
ⓓ Find the values for \(x\) when \(f(x)=0\).
ⓔ Find the \(x\)-intercepts.
ⓕ Find the \(y\)-intercepts.
ⓖ Find the domain. Write it in interval notation.
ⓗ Find the range. Write it in interval notation.
- Answer
-
ⓐ \(f(0)=0\) ⓑ \((\pi/2)=−1\)
ⓒ \(f(−3\pi/2)=−1\) ⓓ \(f(x)=0\) for \(x=−2\pi,-\pi,0,\pi,2\pi\)
ⓔ \((−2\pi,0),(−\pi,0),\) \((0,0),(\pi,0),(2\pi,0)\) \((f)(0,0)\)
ⓖ \([−2\pi,2\pi]\) ⓗ \([−1,1]\)
48.

ⓐ Find: \(f(0)\).
ⓑ Find: \(f(\pi)\).
ⓒ Find: \(f(−\pi)\).
ⓓ Find the values for \(x\) when \(f(x)=0\).
ⓔ Find the \(x\)-intercepts.
ⓕ Find the \(y\)-intercepts.
ⓖ Find the domain. Write it in interval notation.
ⓗ Find the range. Write it in interval notation
49.

ⓐ Find: \(f(0)\).
ⓑ Find: \(f(−3)\).
ⓒ Find: \(f(3)\).
ⓓ Find the values for \(x\) when \(f(x)=0\).
ⓔ Find the \(x\)-intercepts.
ⓕ Find the \(y\)-intercepts.
ⓖ Find the domain. Write it in interval notation.
ⓗ Find the range. Write it in interval notation.
- Answer
-
ⓐ \(f(0)=−6\) ⓑ \(f(−3)=3\) ⓒ \(f(3)=3\) ⓓ \(f(x)=0\) for no x ⓔ none ⓕ \(y=6\) ⓖ \([−3,3]\)
ⓗ \([−3,6]\)
50.

ⓐ Find: \(f(0)\).
ⓑ Find the values for \(x\) when \(f(x)=0\).
ⓒ Find the \(x\)-intercepts.
ⓓ Find the \(y\)-intercepts.
ⓔ Find the domain. Write it in interval notation.
ⓕ Find the range. Write it in interval notation
Writing Exercises
51. Explain in your own words how to find the domain from a graph.
52. Explain in your own words how to find the range from a graph.
53. Explain in your own words how to use the vertical line test.
54. Draw a sketch of the square and cube functions. What are the similarities and differences in the graphs?
Self Check
ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
ⓑ After reviewing this checklist, what will you do to become confident for all objectives?