6.2E: Exercises
- Last updated
- Jan 7, 2020
- Save as PDF
- Page ID
- 30863
( \newcommand{\kernel}{\mathrm{null}\,}\)
Practice Makes Perfect
Factor Trinomials of the Form x2+bx+c
In the following exercises, factor each trinomial of the form x2+bx+c.
1. p2+11p+30
- Answer
-
(p+5)(p+6)
2. w2+10w+21
3. n2+19n+48
- Answer
-
(n+3)(n+16)
4. b2+14b+48
5. a2+25a+100
- Answer
-
(a+5)(a+20)
6. u2+101u+100
7. x2−8x+12
- Answer
-
(x−2)(x−6)
8. q2−13q+36
9. y2−18y+45
- Answer
-
(y−3)(y−15)
10. m2−13m+30
11. x2−8x+7
- Answer
-
(x−1)(x−7)
12. y2−5y+6
13. 5p−6+p2
- Answer
-
(p−1)(p+6)
14. 6n−7+n2
15. 8−6x+x2
- Answer
-
(x−4)(x−2)
16. 7x+x2+6
17. x2−12−11x
- Answer
-
(x−12)(x+1)
18. −11−10x+x2
In the following exercises, factor each trinomial of the form x2+bxy+cy2.
19. x2−2xy−80y2
- Answer
-
(x+8y)(x−10y)
20. p2−8pq−65q2
21. m2−64mn−65n2
- Answer
-
(m+n)(m−65n)
22. p2−2pq−35q2
23. a2+5ab−24b2
- Answer
-
(a+8b)(a−3b)
24. r2+3rs−28s2
25. x2−3xy−14y2
- Answer
-
Prime
26. u2−8uv−24v2
27. m2−5mn+30n2
- Answer
-
Prime
28. c2−7cd+18d2
Factor Trinomials of the Form ax2+bx+c Using Trial and Error
In the following exercises, factor completely using trial and error.
29. p3−8p2−20p
- Answer
-
p(p−10)(p+2)
30. q3−5q2−24q
31. 3m3−21m2+30m
- Answer
-
3m(m−5)(m−2)
32. 11n3−55n2+44n
33. 5x4+10x3−75x2
- Answer
-
5x2(x−3)(x+5)
34. 6y4+12y3−48y2
35. 2t2+7t+5
- Answer
-
(2t+5)(t+1)
36. 5y2+16y+11
37. 11x2+34x+3
- Answer
-
(11x+1)(x+3)
38. 7b2+50b+7
39. 4w2−5w+1
- Answer
-
(4w−1)(w−1)
40. 5x2−17x+6
41. 4q2−7q−2
- Answer
-
(4q+1)(q−2)
42. 10y2−53y−111
43. 6p2−19pq+10q2
- Answer
-
(2p−5q)(3p−2q)
44. 21m2−29mn+10n2
45. 4a2+17ab−15b2
- Answer
-
(4a−3b)(a+5b)
46. 6u2+5uv−14v2
47. −16x2−32x−16
- Answer
-
−16(x+1)(x+1)
48. −81a2+153a+18
49. −30q3−140q2−80q
- Answer
-
−10q(3q+2)(q+4)
50. −5y3−30y2+35y
Factor Trinomials of the Form ax2+bx+c using the ‘ac’ Method
In the following exercises, factor using the ‘ac’ method.
51. 5n2+21n+4
- Answer
-
(5n+1)(n+4)
52. 8w2+25w+3
53. 4k2−16k+15
- Answer
-
(2k−3)(2k−5)
54. 5s2−9s+4
55. 6y2+y−15
- Answer
-
(3y+5)(2y−3)
56. 6p2+p−22
57. 2n2−27n−45
- Answer
-
(2n+3)(n−15)
58. 12z2−41z−11
59. 60y2+290y−50
- Answer
-
10(6y−1)(y+5)
60. 6u2−46u−16
61. 48z3−102z2−45z
- Answer
-
3z(8z+3)(2z−5)
62. 90n3+42n2−216n
63. 16s2+40s+24
- Answer
-
8(2s+3)(s+1)
64. 24p2+160p+96
65. 48y2+12y−36
- Answer
-
12(4y−3)(y+1)
66. 30x2+105x−60
Factor Using Substitution
In the following exercises, factor using substitution.
67. x4−x2−12
- Answer
-
(x2+3)(x2−4)
68. x4+2x2−8
69. x4−3x2−28
- Answer
-
(x2−7)(x2+4)
70. x4−13x2−30
71. (x−3)2−5(x−3)−36
- Answer
-
(x−12)(x+1)
72. (x−2)2−3(x−2)−54
73. (3y−2)2−(3y−2)−2
- Answer
-
(3y−4)(3y−1)
74. (5y−1)2−3(5y−1)−18
Mixed Practice
In the following exercises, factor each expression using any method.
75. u2−12u+36
- Answer
-
(u−6)(u−6)
76. x2−14x−32
77. r2−20rs+64s2
- Answer
-
(r−4s)(r−16s)
78. q2−29qr−96r2
79. 12y2−29y+14
- Answer
-
(4y−7)(3y−2)
80. 12x2+36y−24z
81. 6n2+5n−4
- Answer
-
(2n−1)(3n+4)
82. 3q2+6q+2
83. 13z2+39z−26
- Answer
-
13(z2+3z−2)
84. 5r2+25r+30
85. 3p2+21p
- Answer
-
3p(p+7)
86. 7x2−21x
87. 6r2+30r+36
- Answer
-
6(r+2)(r+3)
88. 18m2+15m+3
89. 24n2+20n+4
- Answer
-
4(2n+1)(3n+1)
90. 4a2+5a+2
91. x4−4x2−12
- Answer
-
(x2+2)(x2−6)
92. x4−7x2−8
93. (x+3)2−9(x+3)−36
- Answer
-
(x−9)(x+6)
94. (x+2)2−25(x+2)−54
Writing Exercises
95. Many trinomials of the form x2+bx+c factor into the product of two binomials (x+m)(x+n). Explain how you find the values of m and n.
- Answer
-
Answers will vary.
96. Tommy factored x2−x−20 as (x+5)(x−4). Sara factored it as (x+4)(x−5). Ernesto factored it as (x−5)(x−4). Who is correct? Explain why the other two are wrong.
97. List, in order, all the steps you take when using the “ac” method to factor a trinomial of the form ax2+bx+c.
- Answer
-
Answers will vary.
98. How is the “ac” method similar to the “undo FOIL” method? How is it different?
Self Check
a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
b. After reviewing this checklist, what will you do to become confident for all objectives?