# 6.2E: Exercises

• • OpenStax
• OpenStax
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## Practice Makes Perfect

Factor Trinomials of the Form $$x^2+bx+c$$

In the following exercises, factor each trinomial of the form $$x^2+bx+c$$.

1. $$p^2+11p+30$$

$$(p+5)(p+6)$$

2. $$w^2+10w+21$$

3. $$n^2+19n+48$$

$$(n+3)(n+16)$$

4. $$b^2+14b+48$$

5. $$a^2+25a+100$$

$$(a+5)(a+20)$$

6. $$u^2+101u+100$$

7. $$x^2−8x+12$$

$$(x−2)(x−6)$$

8. $$q^2−13q+36$$

9. $$y^2−18y+45$$

$$(y−3)(y−15)$$

10. $$m^2−13m+30$$

11. $$x^2−8x+7$$

$$(x−1)(x−7)$$

12. $$y^2−5y+6$$

13. $$5p−6+p^2$$

$$(p−1)(p+6)$$

14. $$6n−7+n^2$$

15. $$8−6x+x^2$$

$$(x−4)(x−2)$$

16. $$7x+x^2+6$$

17. $$x^2−12−11x$$

$$(x−12)(x+1)$$

18. $$−11−10x+x^2$$

In the following exercises, factor each trinomial of the form $$x^2+bxy+cy^2$$.

19. $$x^2−2xy−80y^2$$

$$(x+8y)(x−10y)$$

20. $$p^2−8pq−65q^2$$

21. $$m^2−64mn−65n^2$$

$$(m+n)(m−65n)$$

22. $$p^2−2pq−35q^2$$

23. $$a^2+5ab−24b^2$$

$$(a+8b)(a−3b)$$

24. $$r^2+3rs−28s^2$$

25. $$x^2−3xy−14y^2$$

Prime

26. $$u^2−8uv−24v^2$$

27. $$m^2−5mn+30n^2$$

Prime

28. $$c^2−7cd+18d^2$$

Factor Trinomials of the Form $$ax^2+bx+c$$ Using Trial and Error

In the following exercises, factor completely using trial and error.

29. $$p^3−8p^2−20p$$

$$p(p−10)(p+2)$$

30. $$q^3−5q^2−24q$$

31. $$3m^3−21m^2+30m$$

$$3m(m−5)(m−2)$$

32. $$11n^3−55n^2+44n$$

33. $$5x^4+10x^3−75x^2$$

$$5x^2(x−3)(x+5)$$

34. $$6y^4+12y^3−48y^2$$

35. $$2t^2+7t+5$$

$$(2t+5)(t+1)$$

36. $$5y^2+16y+11$$

37. $$11x^2+34x+3$$

$$(11x+1)(x+3)$$

38. $$7b^2+50b+7$$

39. $$4w^2−5w+1$$

$$(4w−1)(w−1)$$

40. $$5x^2−17x+6$$

41. $$4q^2−7q−2$$

$$(4q+1)(q−2)$$

42. $$10y^2−53y−111$$

43. $$6p^2−19pq+10q^2$$

$$(2p−5q)(3p−2q)$$

44. $$21m^2−29mn+10n^2$$

45. $$4a^2+17ab−15b^2$$

$$(4a−3b)(a+5b)$$

46. $$6u^2+5uv−14v^2$$

47. $$−16x^2−32x−16$$

$$−16(x+1)(x+1)$$

48. $$−81a^2+153a+18$$

49. $$−30q^3−140q^2−80q$$

$$- 10q(3q+2)(q+4)$$

50. $$−5y^3−30y^2+35y$$

Factor Trinomials of the Form $$ax^2+bx+c$$ using the ‘ac’ Method

In the following exercises, factor using the ‘ac’ method.

51. $$5n^2+21n+4$$

$$(5n+1)(n+4)$$

52. $$8w^2+25w+3$$

53. $$4k^2−16k+15$$

$$(2k−3)(2k−5)$$

54. $$5s^2−9s+4$$

55. $$6y^2+y−15$$

$$(3y+5)(2y−3)$$

56. $$6p^2+p−22$$

57. $$2n^2−27n−45$$

$$(2n+3)(n−15)$$

58. $$12z^2−41z−11$$

59. $$60y^2+290y−50$$

$$10(6y−1)(y+5)$$

60. $$6u^2−46u−16$$

61. $$48z^3−102z^2−45z$$

$$3z(8z+3)(2z−5)$$

62. $$90n^3+42n^2−216n$$

63. $$16s^2+40s+24$$

$$8(2s+3)(s+1)$$

64. $$24p^2+160p+96$$

65. $$48y^2+12y−36$$

$$12(4y−3)(y+1)$$

66. $$30x^2+105x−60$$

Factor Using Substitution

In the following exercises, factor using substitution.

67. $$x^4−x^2−12$$

$$(x^2+3)(x^2−4)$$

68. $$x^4+2x^2−8$$

69. $$x^4−3x^2−28$$

$$(x^2−7)(x^2+4)$$

70. $$x^4−13x^2−30$$

71. $$(x−3)^2−5(x−3)−36$$

$$(x−12)(x+1)$$

72. $$(x−2)^2−3(x−2)−54$$

73. $$(3y−2)^2−(3y−2)−2$$

$$(3y−4)(3y−1)$$

74. $$(5y−1)^2−3(5y−1)−18$$

Mixed Practice

In the following exercises, factor each expression using any method.

75. $$u^2−12u+36$$

$$(u−6)(u−6)$$

76. $$x^2−14x−32$$

77. $$r^2−20rs+64s^2$$

$$(r−4s)(r−16s)$$

78. $$q^2−29qr−96r^2$$

79. $$12y^2−29y+14$$

$$(4y−7)(3y−2)$$

80. $$12x^2+36y−24z$$

81. $$6n^2+5n−4$$

$$(2n−1)(3n+4)$$

82. $$3q^2+6q+2$$

83. $$13z^2+39z−26$$

$$13(z^2+3z−2)$$

84. $$5r^2+25r+30$$

85. $$3p^2+21p$$

$$3p(p+7)$$

86. $$7x^2−21x$$

87. $$6r^2+30r+36$$

$$6(r+2)(r+3)$$

88. $$18m^2+15m+3$$

89. $$24n^2+20n+4$$

$$4(2n+1)(3n+1)$$

90. $$4a^2+5a+2$$

91. $$x^4−4x^2−12$$

$$(x^2+2)(x^2−6)$$

92. $$x^4−7x^2−8$$

93. $$(x+3)^2−9(x+3)−36$$

$$(x−9)(x+6)$$

94. $$(x+2)^2−25(x+2)−54$$

## Writing Exercises

95. Many trinomials of the form $$x^2+bx+c$$ factor into the product of two binomials $$(x+m)(x+n)$$. Explain how you find the values of $$m$$ and $$n$$.

96. Tommy factored $$x^2−x−20$$ as $$(x+5)(x−4)$$. Sara factored it as $$(x+4)(x−5)$$. Ernesto factored it as $$(x−5)(x−4)$$. Who is correct? Explain why the other two are wrong.

97. List, in order, all the steps you take when using the “$$ac$$” method to factor a trinomial of the form $$ax^2+bx+c$$.

98. How is the “$$ac$$” method similar to the “undo FOIL” method? How is it different?

## Self Check

a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section. b. After reviewing this checklist, what will you do to become confident for all objectives?

This page titled 6.2E: Exercises is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.