# 6.2E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Practice Makes Perfect

Factor Trinomials of the Form $$x^2+bx+c$$

In the following exercises, factor each trinomial of the form $$x^2+bx+c$$.

1. $$p^2+11p+30$$

$$(p+5)(p+6)$$

2. $$w^2+10w+21$$

3. $$n^2+19n+48$$

$$(n+3)(n+16)$$

4. $$b^2+14b+48$$

5. $$a^2+25a+100$$

$$(a+5)(a+20)$$

6. $$u^2+101u+100$$

7. $$x^2−8x+12$$

$$(x−2)(x−6)$$

8. $$q^2−13q+36$$

9. $$y^2−18y+45$$

$$(y−3)(y−15)$$

10. $$m^2−13m+30$$

11. $$x^2−8x+7$$

$$(x−1)(x−7)$$

12. $$y^2−5y+6$$

13. $$5p−6+p^2$$

$$(p−1)(p+6)$$

14. $$6n−7+n^2$$

15. $$8−6x+x^2$$

$$(x−4)(x−2)$$

16. $$7x+x^2+6$$

17. $$x^2−12−11x$$

$$(x−12)(x+1)$$

18. $$−11−10x+x^2$$

In the following exercises, factor each trinomial of the form $$x^2+bxy+cy^2$$.

19. $$x^2−2xy−80y^2$$

$$(x+8y)(x−10y)$$

20. $$p^2−8pq−65q^2$$

21. $$m^2−64mn−65n^2$$

$$(m+n)(m−65n)$$

22. $$p^2−2pq−35q^2$$

23. $$a^2+5ab−24b^2$$

$$(a+8b)(a−3b)$$

24. $$r^2+3rs−28s^2$$

25. $$x^2−3xy−14y^2$$

Prime

26. $$u^2−8uv−24v^2$$

27. $$m^2−5mn+30n^2$$

Prime

28. $$c^2−7cd+18d^2$$

Factor Trinomials of the Form $$ax^2+bx+c$$ Using Trial and Error

In the following exercises, factor completely using trial and error.

29. $$p^3−8p^2−20p$$

$$p(p−10)(p+2)$$

30. $$q^3−5q^2−24q$$

31. $$3m^3−21m^2+30m$$

$$3m(m−5)(m−2)$$

32. $$11n^3−55n^2+44n$$

33. $$5x^4+10x^3−75x^2$$

$$5x^2(x−3)(x+5)$$

34. $$6y^4+12y^3−48y^2$$

35. $$2t^2+7t+5$$

$$(2t+5)(t+1)$$

36. $$5y^2+16y+11$$

37. $$11x^2+34x+3$$

$$(11x+1)(x+3)$$

38. $$7b^2+50b+7$$

39. $$4w^2−5w+1$$

$$(4w−1)(w−1)$$

40. $$5x^2−17x+6$$

41. $$4q^2−7q−2$$

$$(4q+1)(q−2)$$

42. $$10y^2−53y−111$$

43. $$6p^2−19pq+10q^2$$

$$(2p−5q)(3p−2q)$$

44. $$21m^2−29mn+10n^2$$

45. $$4a^2+17ab−15b^2$$

$$(4a−3b)(a+5b)$$

46. $$6u^2+5uv−14v^2$$

47. $$−16x^2−32x−16$$

$$−16(x+1)(x+1)$$

48. $$−81a^2+153a+18$$

49. $$−30q^3−140q^2−80q$$

$$- 10q(3q+2)(q+4)$$

50. $$−5y^3−30y^2+35y$$

Factor Trinomials of the Form $$ax^2+bx+c$$ using the ‘ac’ Method

In the following exercises, factor using the ‘ac’ method.

51. $$5n^2+21n+4$$

$$(5n+1)(n+4)$$

52. $$8w^2+25w+3$$

53. $$4k^2−16k+15$$

$$(2k−3)(2k−5)$$

54. $$5s^2−9s+4$$

55. $$6y^2+y−15$$

$$(3y+5)(2y−3)$$

56. $$6p^2+p−22$$

57. $$2n^2−27n−45$$

$$(2n+3)(n−15)$$

58. $$12z^2−41z−11$$

59. $$60y^2+290y−50$$

$$10(6y−1)(y+5)$$

60. $$6u^2−46u−16$$

61. $$48z^3−102z^2−45z$$

$$3z(8z+3)(2z−5)$$

62. $$90n^3+42n^2−216n$$

63. $$16s^2+40s+24$$

$$8(2s+3)(s+1)$$

64. $$24p^2+160p+96$$

65. $$48y^2+12y−36$$

$$12(4y−3)(y+1)$$

66. $$30x^2+105x−60$$

Factor Using Substitution

In the following exercises, factor using substitution.

67. $$x^4−x^2−12$$

$$(x^2+3)(x^2−4)$$

68. $$x^4+2x^2−8$$

69. $$x^4−3x^2−28$$

$$(x^2−7)(x^2+4)$$

70. $$x^4−13x^2−30$$

71. $$(x−3)^2−5(x−3)−36$$

$$(x−12)(x+1)$$

72. $$(x−2)^2−3(x−2)−54$$

73. $$(3y−2)^2−(3y−2)−2$$

$$(3y−4)(3y−1)$$

74. $$(5y−1)^2−3(5y−1)−18$$

Mixed Practice

In the following exercises, factor each expression using any method.

75. $$u^2−12u+36$$

$$(u−6)(u−6)$$

76. $$x^2−14x−32$$

77. $$r^2−20rs+64s^2$$

$$(r−4s)(r−16s)$$

78. $$q^2−29qr−96r^2$$

79. $$12y^2−29y+14$$

$$(4y−7)(3y−2)$$

80. $$12x^2+36y−24z$$

81. $$6n^2+5n−4$$

$$(2n−1)(3n+4)$$

82. $$3q^2+6q+2$$

83. $$13z^2+39z−26$$

$$13(z^2+3z−2)$$

84. $$5r^2+25r+30$$

85. $$3p^2+21p$$

$$3p(p+7)$$

86. $$7x^2−21x$$

87. $$6r^2+30r+36$$

$$6(r+2)(r+3)$$

88. $$18m^2+15m+3$$

89. $$24n^2+20n+4$$

$$4(2n+1)(3n+1)$$

90. $$4a^2+5a+2$$

91. $$x^4−4x^2−12$$

$$(x^2+2)(x^2−6)$$

92. $$x^4−7x^2−8$$

93. $$(x+3)^2−9(x+3)−36$$

$$(x−9)(x+6)$$

94. $$(x+2)^2−25(x+2)−54$$

## Writing Exercises

95. Many trinomials of the form $$x^2+bx+c$$ factor into the product of two binomials $$(x+m)(x+n)$$. Explain how you find the values of $$m$$ and $$n$$.

96. Tommy factored $$x^2−x−20$$ as $$(x+5)(x−4)$$. Sara factored it as $$(x+4)(x−5)$$. Ernesto factored it as $$(x−5)(x−4)$$. Who is correct? Explain why the other two are wrong.

97. List, in order, all the steps you take when using the “$$ac$$” method to factor a trinomial of the form $$ax^2+bx+c$$.

98. How is the “$$ac$$” method similar to the “undo FOIL” method? How is it different?