# 8.7E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### Practice Makes Perfect

##### Exercise $$\PageIndex{17}$$ Evaluate a Radical Function

In the following exercises, evaluate each function.

1. $$f(x)=\sqrt{4 x-4}$$, find
1. $$f(5)$$
2. $$f(0)$$
2. $$f(x)=\sqrt{6 x-5}$$, find
1. $$f(5)$$
2. $$f(-1)$$
3. $$g(x)=\sqrt{6 x+1}$$, find
1. $$g(4)$$
2. $$g(8)$$
4. $$g(x)=\sqrt{3 x+1}$$, find
1. $$g(8)$$
2. $$g(5)$$
5. $$F(x)=\sqrt{3-2 x}$$, find
1. $$F(1)$$
2. $$F(-11)$$
6. $$F(x)=\sqrt{8-4 x}$$, find
1. $$F(1)$$
2. $$F(-2)$$
7. $$G(x)=\sqrt{5 x-1}$$, find
1. $$G(5)$$
2. $$G(2)$$
8. $$G(x)=\sqrt{4 x+1}$$, find
1. $$G(11)$$
2. $$G(2)$$
9. $$g(x)=\sqrt[3]{2 x-4}$$, find
1. $$g(6)$$
2. $$g(-2)$$
10. $$g(x)=\sqrt[3]{7 x-1}$$, find
1. $$g(4)$$
2. $$g(-1)$$
11. $$h(x)=\sqrt[3]{x^{2}-4}$$, find
1. $$h(-2)$$
2. $$h(6)$$
12. $$h(x)=\sqrt[3]{x^{2}+4}$$, find
1. $$h(-2)$$
2. $$h(6)$$
13. For the function $$f(x)=\sqrt[4]{2 x^{3}}$$, find
1. $$f(0)$$
2. $$f(2)$$
14. For the function $$f(x)=\sqrt[4]{3 x^{3}}$$, find
1. $$f(0)$$
2. $$f(3)$$
15. For the function $$g(x)=\sqrt[4]{4-4 x}$$, find
1. $$g(1)$$
2. $$g(-3)$$
16. For the function $$g(x)=\sqrt[4]{8-4 x}$$, find
1. $$g(-6)$$
2. $$g(2)$$

1.

1. $$f(5)=4$$
2. no value at $$x=0$$

3.

1. $$g(4)=5$$
2. $$g(8)=7$$

5.

1. $$F(1)=1$$
2. $$F(-11)=5$$

7.

1. $$G(5)=2 \sqrt{6}$$
2. $$G(2)=3$$

9.

1. $$g(6)=2$$
2. $$g(-2)=-2$$

11.

1. $$h(-2)=0$$
2. $$h(6)=2 \sqrt[3]{4}$$

13.

1. $$f(0)=0$$
2. $$f(2)=2$$

15.

1. $$g(1)=0$$
2. $$g(-3)=2$$
##### Exercise $$\PageIndex{18}$$ Find the Domain of a Radical Function

In the following exercises, find the domain of the function and write the domain in interval notation.

1. $$f(x)=\sqrt{3 x-1}$$
2. $$f(x)=\sqrt{4 x-2}$$
3. $$g(x)=\sqrt{2-3 x}$$
4. $$g(x)=\sqrt{8-x}$$
5. $$h(x)=\sqrt{\frac{5}{x-2}}$$
6. $$h(x)=\sqrt{\frac{6}{x+3}}$$
7. $$f(x)=\sqrt{\frac{x+3}{x-2}}$$
8. $$f(x)=\sqrt{\frac{x-1}{x+4}}$$
9. $$g(x)=\sqrt[3]{8 x-1}$$
10. $$g(x)=\sqrt[3]{6 x+5}$$
11. $$f(x)=\sqrt[3]{4 x^{2}-16}$$
12. $$f(x)=\sqrt[3]{6 x^{2}-25}$$
13. $$F(x)=\sqrt[4]{8 x+3}$$
14. $$F(x)=\sqrt[4]{10-7 x}$$
15. $$G(x)=\sqrt[5]{2 x-1}$$
16. $$G(x)=\sqrt[5]{6 x-3}$$

1. $$\left[\frac{1}{3}, \infty\right)$$

3. $$\left(-\infty, \frac{2}{3}\right]$$

5. $$(2, \infty)$$

7. $$(-\infty,-3] \cup(2, \infty)$$

9. $$(-\infty, \infty)$$

11. $$(-\infty, \infty)$$

13. $$\left[-\frac{3}{8}, \infty\right)$$

15. $$(-\infty, \infty)$$

##### Exercise $$\PageIndex{19}$$ graph radical functions

In the following exercises,

1. find the domain of the function
2. graph the function
3. use the graph to determine the range
1. $$f(x)=\sqrt{x+1}$$
2. $$f(x)=\sqrt{x-1}$$
3. $$g(x)=\sqrt{x+4}$$
4. $$g(x)=\sqrt{x-4}$$
5. $$f(x)=\sqrt{x}+2$$
6. $$f(x)=\sqrt{x}-2$$
7. $$g(x)=2 \sqrt{x}$$
8. $$g(x)=3 \sqrt{x}$$
9. $$f(x)=\sqrt{3-x}$$
10. $$f(x)=\sqrt{4-x}$$
11. $$g(x)=-\sqrt{x}$$
12. $$g(x)=-\sqrt{x}+1$$
13. $$f(x)=\sqrt[3]{x+1}$$
14. $$f(x)=\sqrt[3]{x-1}$$
15. $$g(x)=\sqrt[3]{x+2}$$
16. $$g(x)=\sqrt[3]{x-2}$$
17. $$f(x)=\sqrt[3]{x}+3$$
18. $$f(x)=\sqrt[3]{x}-3$$
19. $$g(x)=\sqrt[3]{x}$$
20. $$g(x)=-\sqrt[3]{x}$$
21. $$f(x)=2 \sqrt[3]{x}$$
22. $$f(x)=-2 \sqrt[3]{x}$$

1.

1. domain: $$[-1, \infty)$$

2. Figure 8.7.8
3. $$[0, \infty)$$

3.

1. domain: $$[-4, \infty)$$

2. Figure 8.7.9
3. $$[0, \infty)$$

5.

1. domain: $$[0, \infty)$$

2. Figure 8.7.10
3. $$[2, \infty)$$

7.

1. domain: $$[0, \infty)$$

2. Figure 8.7.11
3. $$[0, \infty)$$

9.

1. domain: $$(-\infty, 3]$$

2. Figure 8.7.12
3. $$[0, \infty)$$

11.

1. domain: $$[0, \infty)$$

2. Figure 8.7.13
3. $$(-\infty, 0]$$

13.

1. domain: $$(-\infty, \infty)$$

2. Figure 8.7.14
3. $$(-\infty, \infty)$$

15.

1. domain: $$(-\infty, \infty)$$

2. Figure 8.7.15
3. $$(-\infty, \infty)$$

17.

1. domain: $$(-\infty, \infty)$$

2. Figure 8.7.16
3. $$(-\infty, \infty)$$

19.

1. domain: $$(-\infty, \infty)$$

2. Figure 8.7.17
3. $$(-\infty, \infty)$$

21.

1. domain: $$(-\infty, \infty)$$

2. Figure 8.7.18
3. $$(-\infty, \infty)$$
##### Exercise $$\PageIndex{20}$$ writing exercises
1. Explain how to find the domain of a fourth root function.
2. Explain how to find the domain of a fifth root function.
3. Explain why $$y=\sqrt[3]{x}$$ is a function.
4. Explain why the process of finding the domain of a radical function with an even index is different from the process when the index is odd.