1.7e: Exercises - Absolute Value
- Page ID
- 45456
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Absolute Value Equations (I)
Exercise \(\PageIndex{A}\)
\( \bigstar \) Solve the following absolute value equations.
|
|
|
|
- Answers to odd exercises:
-
1. \(x = −3\) or \(x = 13\)
3. \(x = −7 \) or \( x = −1\)
5. \(x = −9 \) or \( x = 5\)
7. \(x=5\) or \(x=9\)9. \(x=8,\space x=0\)
11. \(x=7, \, x=1\)
13. \(x=1, \,x=−5\)
15. \(x=4, \space x=−\dfrac{2}{3}\)
17. \(x=−1,\space x=\dfrac{5}{2}\)
19. \(x = 0\) or \(x = 3\)21. \(x=−1, \,x=−\dfrac{5}{2}\)
23. no solution
25. \(x=1, \,x=−\dfrac{1}{2}\)
\( \bigstar \) Solve the following absolute value equations.
|
|
|
|
- Answers to odd exercises:
-
31. \(x=14, \,x=2\)
33. \(x = \frac{1}{2}, \; x = 1\)35. \(x = \frac{-32}{3}, \; x = 24\)
37. \(x = \frac{9}{2}, \; x = \frac{-21}{4} \)39. \(x = 0\), \(x = 6\)
41. \(x=−1, \,x=−\frac{2}{3}\)43. \(x=−3, \,x=3\)
45. \(x=−\frac{2}{7}, \; x=\frac{4}{3}\)47. \(x=3, x=\frac{1}{9}\)
49. \(x = 3, \; x = 5\)
B: Absolute Value Linear Inequalities (I)
Exercise \(\PageIndex{B}\): Absolute Value Linear Inequalities I
\( \bigstar \) Solve. State the solution in interval notation and graph the solution set on the number line.
|
|
|
|
- Answers to odd exercises:
-
51. \(( - 5,5 )\);
53. \([ - 4 , - 2 ]\);
55. \(\emptyset\);
57. \([ - 1,4 ]\);
59. \(\left\{ \frac { 3 } { 5 } \right\}\);
61. \([ - 1,5 ]\);
63. \(( - \infty , - 5 ] \cup [ 5 , \infty )\);
65. \(( - \infty , - 10 ) \cup ( 6 , \infty )\);
67. \(\mathbb { R }\);
69. \(( - \infty , - 2 ] \cup [ 7 , \infty )\);
71. \(\left( - \infty , - \frac { 3 } { 2 } \right) \cup ( 3 , \infty )\);
73. \(( - \infty , - 2 ) \cup ( 5 , \infty )\);
C: Absolute Value Linear Inequalities (II)
Exercise \(\PageIndex{C}\): Absolute Value Linear Inequalities II
\( \bigstar \) Solve. State the solution in interval notation and graph the solution set on the number line.
|
|
|
|
Answers to odd exercises:-
81. \(( - \infty , - 2 ) \cup ( 3 , \infty )\);
83. \(( 1,7 )\);
85. \(( - \infty , 3 ) \cup ( 5 , \infty )\);
87. \(( - \infty , - 8 ) \cup ( 3 , \infty )\);
89. \(( - \infty , - 19 ] \cup [ - 6 , \infty )\);
91. \(\mathbb { R }\);
93. \(\left[ \frac { 2 } { 3 } , 2 \right]\);
95. \(( - 12 , - 2 )\);
97. \(( - \infty , 0 ) \cup ( 6 , \infty )\);
99. \(\left( 0 , \frac { 1 } { 2 } \right)\);
101. \(\frac { 1 } { 2 }\);
103. \(\left( - \frac { 1 } { 2 } , \frac { 3 } { 2 } \right)\);
105. \([ 0,3 ]\);
107. \(( - \infty , 3 ) \cup ( 9 , \infty )\);