Skip to main content
Mathematics LibreTexts

2.1e: Exercises - Functions and Function Notation

  • Page ID
    38284
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A: Concepts

    Exercise \(\PageIndex{A}\) 

     1) What is the difference between a relation and a function?
     2) What is the difference between the input and the output of a function?
     3) Why does the vertical line test tell us whether the graph of a relation represents a function?
     4) How can you determine if a relation is a one-to-one function?
     5) Why does the horizontal line test tell us whether the graph of a function is one-to-one?

    Answers to odd exercises:

    1. A relation is a set of ordered pairs. A function is a special kind of relation in which no two ordered pairs have the same first coordinate.

    3. When a vertical line intersects the graph of a relation more than once, that indicates that for that input there is more than one output. At any particular input value, there can be only one output if the relation is to be a function.

    5. When a horizontal line intersects the graph of a function more than once, that indicates that for that output there is more than one input. A function is one-to-one if each output corresponds to only one input.

    B: Determine if a set of points is a function

    Exercise \(\PageIndex{B}\) 

    \( \bigstar \) Determine whether the relation represents a function.

    7) \(\{(3,4),(4,5),(5,6)\}\)

    8) \(\{(−1,−1),(−2,−2),(−3,−3)\}\)

    9) \( \{ (10,4), (-1,1), (-2,4), (4,9) \} \)

    10) \( \{ (2,5),(7,11),(15,8),(7,9)\}\)

    11) \( \{ (1,4), (1,5), (1,6) \} \)

    12) \( \{ (4,1), (5,1), (6,1) \} \)

    13) \(\{(a,b),(b,c),(c,c)\}\)

    14) \(\{(a,b), (c,d), (a,c)\}\)

    Answers to odd exercises:

    7. function \( \qquad\) 9. function \( \qquad \) 11. not a function  \( \qquad\) 13. function.

    C: Determine if an Equation is a function

    Exercise \(\PageIndex{C}\) 

    \( \bigstar \) Determine whether the relation represents \(y\) as a function of \(x\).

    15) \(x+y = 25\)

    16) \(5x+2y=10\)

    16.1) \(|y| +x=2\)

    16.2) \(|x|-y=-3\)

    17) \(x=y^2\)

     

    18) \(y=x^2\)

    19) \(3x^2+y=14\)

    20) \(2x+y^2=6\)

    21) \(y=−2x^2+40x\)

    22) \(x=y^2-8y+9\)

    23) \(y^2=x^2\)

    24) \(y^3=x^2\)

    25) \(y=x^3\)

    26) \(x=y^3\)

    27) \(y=\dfrac{1}{x}\)

    28) \(2xy=1\)

    29) \(y=\dfrac{3x+5}{7x−1}\)

    30) \(x=\dfrac{3y+5}{7y−1}\)

    31) \(y=\pm\sqrt{1−x}\)

    32) \(x=\pm\sqrt{1-y}\)

    33) \(y=\sqrt{1−x^2}\)

    34) \(x=\sqrt{1−y^2}\)

    Answers to odd exercises:

    15. function \( \qquad \) 17. not a function \( \qquad \) 19. function  \( \qquad \) 21. function \( \qquad\) 23. not a function \( \qquad \)
    25. function \( \qquad \) 27. function \( \qquad \) 29. function \( \qquad \)  31. not a function \( \qquad\) 33. function 

    D: Determine if a graph is a function (Vertical Line Test)

    Exercise \(\PageIndex{D}\) 

    \( \bigstar \) Use the vertical line text to identify graphs in which \(y\) is a function of \( x \)

    35)

    A horizontal hyperbola centered at (0, 0) in the x y coordinate system with Vertices at (negative 6, 0) and (6, 0).

    36)

    Graph of relation.

    37)

    Graph of relation.

    38)

    Graph of relation.

    39)

    Graph of relation.

    40)

    Graph of relation.

    41)

    Graph of relation.

    42)

    Graph of relation.

    43)

    Graph of relation.

    44)

    Graph of relation.

    45)

    Graph of relation.

    46)

    Graph of relation.

    47)

    Graph of relation.

    48)

    clipboard_ea68efb190d5e7d001f6d761a3b94ccf2.png
    Answers to odd exercises:
    35. not a function \( \;\;\) 37. function  \( \;\; \) 39. not a function \( \;\;\) 41. function\( \;\;\) 43. function \( \;\; \) 45. function\( \;\; \) 47. function

    E: Obtain Function Values from a formula

    Exercise \(\PageIndex{E}\)

    \( \bigstar \) Evaluate the function \(f\) at the values   a. \(f(−2)\),  b. \(f(−1)\),  c. \(f(0)\),  d. \(f(1)\), and  e. \(f(2)\).

    49) \(f(x)=8−3x\)

    50) \(f(x)=4−2x\)

    51) \(f(x)=3+\sqrt{x+3}\)

    52) \(f(x)=8x^2−7x+3\)

    53) \(f(x)=3^x\)

    54) \(f(x)=\dfrac{x-2}{x+3}\)

    \( \bigstar \) Evaluate the function \(f\) at the values  a. \(f(−3)\),  b. \( f(2)\),  c. \(f(−a)\),  d. \(−f(a)\),  e. \( f(a+h)\).

    55) \(f(x)=2x−5\)

    56) \(f(x)=−5x^2+2x−1\)

    57) \(f(x)=\sqrt{2−x}+5\)

    58) \( f(x) = \sqrt{x^2+16}-3 \)

    59) \(f(x)=|x−1|−|x+1|\)

    60) \( f(x) = \dfrac{|x+3|}{x-3}\)

    61) \( f(x) = \dfrac{x^2-1}{x+3}\)

    62) \(f(x)=\dfrac{1-x}{5x+2}\)

    \( \bigstar \) For the following exercises, find the values listed below for each function, if they exist, then simplify.
    \( \quad \) a.  \(f(0)\),  b. \(f(1)\),  c. \(f(3)\),  d. \(f(−x)\),  e. \(f(a)\),  f. \(f(a+h)\)

    63) \(f(x)=5x−2\)

    64) \(f(x)=4x^2−3x+1\)

    65) \(f(x)=\dfrac{2}{x}\)

    66) \(f(x)=|x−7|+8\)

    67) \(f(x)=\sqrt{6x+5}\)

    68) \(f(x)=\dfrac{x−2}{3x+7}\)

    69) \(f(x)=9\)

    Answers to odd exercises:

    49. a. \(f(−2)=14\);  b. \(f(−1)=11\);  c. \(f(0)=8\);  d. \(f(1)=5\);  e. \(f(2)=2\)
    51. a. \(f(−2)=4\);   b. \(f(−1)=4.414\);   c. \(f(0)=4.732\);   d. \(f(1)=5\);   e. \(f(2)=5.236\)
    53. a. \(f(−2)=\frac{1}{9}\);   b. \(f(−1)=\frac{1}{3}\);   c. \(f(0)=1\);   d. \(f(1)=3\);   e. \(f(2)=9\)
    55. a. \(f(−3)=−11\); b. \(f(2)=−1\); c. \(f(−a)=−2a−5\); d. \(−f(a)=−2a+5\); e. \(f(a+h)=2a+2h−5\)
    57. a. \(f(−3)=\sqrt{5}+5\);   b. \(f(2)=5\);   c. \(f(−a)=\sqrt{2+a}+5\);   d. \(−f(a)=−\sqrt{2−a}−5\);  
         e. \(f(a+h)=\sqrt{2−a−h}+5\)
    59. a. \(f(−3)=2\);   b. \(f(2)=1−3=−2\);   c. \(f(−a)=|−a−1|−|−a+1|\);  
         d. \(−f(a)=−|a−1| +|a+1|\);   e. \(f(a+h)= |a+h−1|−|a+h+1|\)
    61. a. \(f(−3)=\text{undefined} \);  b. \(f(2)=\frac{3}{5}\); c. \(f(−a)=\frac{a^2-1}{3-a}\); d. \(−f(a)=−\frac{a^2-1}{a+3} \); e. \(f(a+h)=\frac{a^2+2ah+h^2-1}{a+h+3}\)
    63) a. \(−2\)   b. \(3\)   c. \(13\)   d. \(−5x−2\)   e. \(5a−2\)   f. \(5a+5h−2\)
    65) a. Undefined   b. \(2\)   c. \(\frac{2}{3}\)   d. \(−\frac{2}{x}\)   e. \(\frac{2}{a}\)   f. \(\frac{2}{a+h}\)
    67) a. \(\sqrt{5}\)   b. \(\sqrt{11}\)   c. \(\sqrt{23}\)   d. \(\sqrt{−6x+5}\)   e. \(\sqrt{6a+5}\)   f. \(\sqrt{6a+6h+5}\)
    69) a. 9   b. 9   c. 9   d. 9   e. 9   f. 9

    F: Determine a function's input or output

    Exercise \(\PageIndex{F}\)

    \( \bigstar \) Determine the following function values.

    71) Given the relation \(3r+2t=18\).

    a. Write the relation as a function \(r=f(t)\).
    b. Evaluate \(f(−3)\).
    c. Solve \(f(t)=2\).

     

    72) Given the function \(k(t)=2t−1\):

    a. Evaluate \(k(2)\).
    b. Solve \(k(t)=7\).

    73) Given the function \(f(x)=8−3x\):

    a. Evaluate \(f(−2)\).
    b. Solve \(f(x)=−1\).

     

    74) Given the function \(p(c)=c^2+c\):

    a. Evaluate \(p(−3)\).
    b. Solve \(p(c)=2\).

    75) Given the function \(f(x)=x^2−3x\):

    a. Evaluate \(f(5)\).
    b. Solve \(f(x)=4\).

     

    76) Given the function \(f(x)=\sqrt{x+2}\):

    a. Evaluate \(f(7)\).
    b. Solve \(f(x)=4\).

    Answers to odd exercises:

    71. a. \(f(t)=6−\frac{2}{3}t\); b. \(f(−3)=8\); c. \(t=6\)  73. a. \(f(−2)=14\); b. \(x=3\)   75. a. \(f(5)=10\); b. \(x=−1\) or \(x=4\)

    G: Obtain Function Values from a Graph

    Exercise \(\PageIndex{G}\) 

    \( \bigstar \) Use the graph of \(f\) to find each indicated function value.

    79) Given the following graph,
    • Evaluate \(f(0)\).
    • Solve for \(f(x)=0\).
    Graph of a rotated cubic function.

    80) Given the following graph,

    • Evaluate \(f(−1)\).
    • Solve for \(f(x)=3\).
    OER 2.1e#80.png

     

    81) Given the following graph,
    • Evaluate \(f(0)\).
    • Solve for \(f(x)=−3\).
    Graph of relation.

    82) Given the following graph,

    • Evaluate \(f(4)\).
    • Solve for \(f(x)=1\).
    Graph of relation.
    Answers to odd exercises:

    79. a.\(f(0) \approx 2.3\); b. \(f(x)=0\), \(x=−3\)  \(\quad\)  81. a.\(f(0)=1\); b. \(f(x)=−3\), \(x=−2\) or \(x=2\)

    H: Evaluate Difference Quotients 

    Exercise \(\PageIndex{H}\) 

    \( \bigstar \) Find and simplify the difference quotient \(\dfrac{f(x+h) - f(x)}{h} \) for the given function. Simplify so \(h\) is not a factor in the denominator. This may involve simplifying complex fractions or rationalizing the numerator.

    1. \( f(x) = 2x - 5 \) 
    2. \( f(x) = -3x + 5 \)
    3. \( f(x) = 6 \)
    4. \( f(x) = 3x^2 - x \)
    5. \( f(x) = -x^2 + 2x - 1 \)
    6. \( f(x) = 4x^2 \)
    7. \( f(x) = x-x^2 \)
    8. \( f(x) = x^{3} + 1 \)
    9. \( f(x) = mx + b\; \) where \( m \neq 0 \)
    10. \( f(x) = ax^{2} + bx + c\; \) where \( a \neq 0 \)
    1. \( f(x) = \dfrac{2}{x} \)
    2. \( f(x) = \dfrac{3}{1-x} \)
    3. \( f(x) = \dfrac{1}{x^2} \)
    4. \( f(x) = \dfrac{2}{x+5} \)
    5. \( f(x) = \dfrac{1}{4x-3} \)
    6. \( f(x) = \dfrac{3x}{x+1} \)
    7. \( f(x) = \dfrac{x}{x - 9} \)
    1. \( f(x) = \dfrac{x^2}{2x+1} \)
    2. \( f(x) = \sqrt{x-9} \)
    3. \( f(x) = \sqrt{2x+1} \)
    4. \( f(x) = \sqrt{-4x+5} \)
    5. \( f(x) = \sqrt{4-x} \)
    6. \( f(x) = \sqrt{ax+b} \) , where \( a \neq 0 \) .
    7. \( f(x) = x \sqrt{x} \)
    8. \( f(x) = \sqrt[3]{x} \) .
      \( \textbf{HINT:}  (a-b)\left(a^2+ab+b^2\right) = a^3 - b^3 \)
    9. \(g(x)=5−x^2\)

    109) Given the function \(g(x)=x^2+2x\), evaluate \(\dfrac{g(x)−g(a)}{x−a}\), \(x{\neq}a\) and simplify.

    Answers to odd exercises:

    83. \( 2 \)

    85. \( 0 \)

    87. \( -2x-h+2 \)

    89. \( -2x-h+1 \)

    91. \( m \)

    93. \( \dfrac{-2}{x(x+h)} \)

    95. \( \dfrac{-(2x+h)}{x^2(x+h)^2} \)

    97. \( \dfrac{-4}{(4x-3)(4x+4h-3)} \)

    99. \( \dfrac{-9}{(x - 9)(x + h - 9)} \)

    101. \( \dfrac{1}{\sqrt{x+h-9} + \sqrt{x-9}} \)

    103. \( \dfrac{-4}{\sqrt{-4x-4h+5} + \sqrt{-4x+5}} \)

    105. \( \dfrac{a}{\sqrt{ax+ah+b} + \sqrt{ax+b}} \)

    107. \( \dfrac{1}{(x+h)^{2/3} + (x(x+h))^{1/3} + x^{2/3}} \)

    109. \(\dfrac{g(x)−g(a)}{x−a}=x+a+2\), \(x{\neq}a\)


    2.1e: Exercises - Functions and Function Notation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?