# 5.1e: Exercises - Angles

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

### A: Concepts

Exercise $$\PageIndex{A}$$

1) Draw an angle in standard position. Label the vertex, initial side, and terminal side.

2) Explain why there are an infinite number of angles that are coterminal to a certain angle.

3) State what a positive or negative angle signifies, and explain how to draw each.

4) How does radian measure of an angle compare to the degree measure? Include an explanation of $$1$$ radian in your paragraph.

1.
3. Whether the angle is positive or negative determines the direction. A positive angle is drawn in the counterclockwise direction, and a negative angle is drawn in the clockwise direction.

### B: Draw Angles in Standard Position

Exercise $$\PageIndex{B}$$

$$\bigstar$$ Draw an angle in standard position with the given measure. If the angle measure is not between $$0$$ and $$2 \pi$$ or between $$0^{\circ}$$ and $$360^{\circ}$$, also state the coterminal angle that is within that interval.

 5. $$300^{\circ}$$ 6. $$415^{\circ}$$ 7. $$135^{\circ}$$ 8. $$-30^{\circ}$$ 9. $$-120^{\circ}$$ 10. $$-315^{\circ}$$ 11. $$\dfrac{2π}{3}$$ 12.  $$\dfrac{5π}{3}$$ 13. $$−\dfrac{4π}{3}$$ 14. $$−\dfrac{5π}{3}$$ 15. $$\dfrac{5π}{6}$$ 16.  $$\dfrac{11π}{6}$$ 17. $$−\dfrac{π}{6}$$ 18. $$\dfrac{7π}{6}$$ 19. $$\dfrac{7π}{4}$$ 20. $$\dfrac{5π}{4}$$ 21. $$−\dfrac{3π}{4}$$ 22. $$\dfrac{11π}{4}$$ 23. $$\dfrac{22π}{3}$$ 24. $$\dfrac{17π}{6}$$ 25. $$−\dfrac{π}{10}$$ 26. $$\dfrac{23π}{5}$$ 27. $$\dfrac{π}{2}$$ 28. $$-\dfrac{3π}{2}$$ 29. $$\dfrac{7π}{2}$$ 30. $$-5π$$
 5. 7. 9.   $$240^{\circ}$$ 11. 13. $$\frac{2π}{3}$$ x 15. 17. 19. 21. 23. $$\frac{4π}{3}$$ 25. $$\frac{19π}{10}$$ 27. 29 .  $$\frac{3π}{2}$$

### C: Convert between radians and degrees

Exercise $$\PageIndex{C}$$

$$\bigstar$$ Convert angles in radians to degrees.

 36. $$\dfrac{3π}{4}$$ radians   37. $$\dfrac{π}{9}$$ radians 38. $$−\dfrac{5π}{4}$$ radians   39. $$\dfrac{π}{3}$$ radians 40. $$−\dfrac{7π}{3}$$ radians   41. $$−\dfrac{5π}{12}$$ radians 42. $$\dfrac{11π}{6}$$ radians

$$\bigstar$$ Convert angles in degrees to radians. Write the answer both as a multiple of pi and to the nearest hundredth of a radian.

 43. $$90^{\circ}$$ 44. $$100^{\circ}$$ 45. $$-540^{\circ}$$ 46. $$-120^{\circ}$$ 47. $$180^{\circ}$$ 48. $$-315^{\circ}$$ 49. $$150^{\circ}$$

37. $$20^{\circ} \qquad$$ 39. $$60^{\circ} \qquad$$ 41. $$-75^{\circ} \qquad$$ 43. $$\frac{π}{2} \; \approx \; 1.57$$ radians  $$\qquad$$ 45. $$−3π \; \approx \; 9.42$$ radians
47. $$π \; \approx \; 3.14$$ radians $$\qquad$$ 49. $$\frac{5π}{6} \; \approx \; 2.62$$ radians

### D: Coterminal Angles

Exercise $$\PageIndex{D}$$

$$\bigstar$$ Find the angle between $$0^{\circ}$$ and $$360^{\circ}$$ that is coterminal to the given angle.

50. $$-40^{\circ}$$     $$\qquad$$    51. $$-110^{\circ}$$     $$\qquad$$    52. $$700^{\circ}$$     $$\qquad$$    53. $$1400^{\circ}$$

$$\bigstar$$ Find the angle between $$0$$ and $$2\pi$$ in radians that is coterminal to the given angle.

54. $$−\dfrac{π}{9}$$     $$\qquad$$    55. $$\dfrac{10π}{3}$$     $$\qquad$$    56. $$\dfrac{13π}{6}$$     $$\qquad$$    57. $$\dfrac{44π}{9}$$

51. $$250^{\circ}$$     $$\qquad$$    53. $$320^{\circ}$$     $$\qquad$$ 55. $$\frac{4π}{3}$$     $$\qquad$$    57. $$\frac{8π}{9}$$