Skip to main content
Mathematics LibreTexts

6.2e: Exercises - Trig Equations

  • Page ID
    73000
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Give all answers in radians unless otherwise indicated.   

    A: Concepts

    Exercise \(\PageIndex{A}\)

    1. Will there always be solutions to trigonometric function equations? If not, describe an equation that would not have a solution. Explain why or why not.

    2. When solving a trigonometric equation involving more than one trig function, do we always want to try to rewrite the equation so it is expressed in terms of one trigonometric function? Why or why not?

    3. When solving linear trig equations in terms of only sine or cosine, how do we know whether there will be solutions?

    Answers to odd exercises.

    1. There will not always be solutions to trigonometric function equations. For a basic example, \(\cos(x)=-5\).

    3. Rewrite the equation in the form \( \sin(u) = c\) or \( \cos(u) = c\). If \( |c| \le 1,\) then the equation will have a solution; otherwise it will not have a solution. 

    B: Linear Equations - Special Angle Solutions 

    Exercise \(\PageIndex{B}\)

    \( \bigstar \) Find all solutions on the interval \(0\le \theta <2\pi\).

    5. \(2\sin \left(\theta \right)=-\sqrt{2} \\[2pt] \)

    6. \(2\sin \left(\theta \right)=\sqrt{3} \\[2pt] \)

    7. \(\sin \left(\theta \right)=1 \\[2pt] \)

    8. \(\sin \left(\theta \right)=0\)

    9. \(2\cos \left(\theta \right)=1 \\[2pt] \)

    10. \(2\cos \left(\theta \right)=-\sqrt{2} \\[2pt] \)

    11. \(\cos \left(\theta \right)=0 \\[2pt] \)

    12. \(\cos \left(\theta \right)=1\)

    13. \(\tan x=1 \\[2pt] \)

    14. \(\tan \theta=-1 \\[2pt] \)

    15. \( \sqrt{3}\tan \theta=1 \\[2pt] \)

    16. \( \sqrt{3} +\tan \theta=0\)

    17. \( \sqrt{3} \csc x+2=  0 \\[2pt]\)

    18. \(  \sqrt{3}\sec \theta+2 = 0 \\[2pt] \)

    19. \(  \cot x+1=0\)

    \( \bigstar \) State the general solution and the first four non-negative solutions.

    21. \(2\sin \left(\theta \right) = -1 \\[2pt]  \)

    22. \(2\sin \left(\theta \right) = 1 \\[2pt] \)

    23. \(2\sin \left(3\theta \right)= \sqrt{2} \\[2pt] \)

    24. \(2\sin \left(3\pi\theta \right)=-\sqrt{2} \\[2pt] \)

    25. \(2\sin \left(\dfrac{\theta}{2} \right)=\sqrt{3} \\[2pt] \)

    26. \(\sin \left(\dfrac{2\pi }{3} \theta \right)=-1 \\[2pt] \)

    27. \(\sin \left(\dfrac{3\pi }{4} \theta  + \dfrac{\pi}{2}\right)=0 \\[2pt] \)

    28. \( 2 \sin \left( 4 \pi \theta -\dfrac{\pi}{3} \right)= -\sqrt{3} \\[2pt] \)

    29. \( \csc \left(2\pi x \right)=-2 \\[2pt] \)

    30. \( \csc \left(\dfrac{x }{3} \right)=\sqrt{ 2} \\[2pt] \)

    31. \(2\cos \left(\theta \right)=\sqrt{2} \\[2pt] \)

    32. \(2\cos \left(\theta \right)=-1 \\[2pt] \)

    33. \(2\cos \left(2 \pi \theta \right)=1 \\[2pt] \)

    34. \(2\cos \left(3 \theta \right)=-\sqrt{2} \\[2pt] \)

    35. \(\cos \left(\dfrac{\pi }{4} \theta \right)=-1 \\[2pt] \)

    36. \(2\cos \left( \dfrac{\theta}{3} \right)=\sqrt{3} \\[2pt] \)

    37. \(  2 \cos \left(3 \pi \theta - \dfrac{\pi}{4} \right)=-\sqrt{3}  \\[2pt]  \)

    38. \(\cos \left(\dfrac{\theta}{2} +\dfrac{\pi}{6}  \right)=0 \\[2pt] \)

    39. \(\sec \left(  3x \right)=-2 \\[2pt] \)

    40. \( \sec \left(\dfrac{\pi }{5} x \right)=\sqrt{2} \\[2pt] \)

    41. \( \sqrt{3} \tan ( 3 x ) = -1 \\[2pt] \)

    42. \(  \tan (  \pi x ) = \sqrt{3} \\[2pt] \)

    43. \( \tan\left(\dfrac{\theta}{3} \right) = 1 \\[2pt] \)

    44. \( \tan\left(\dfrac{2\pi }{3} \theta \right) = -1 \\[2pt] \)

    45. \(  \tan\left(2x+ \dfrac{\pi }{2}  \right) = -\sqrt{3}  \\[2pt] \)

    46. \(  \tan\left(\dfrac{\pi }{6} \theta -\dfrac{\pi}{9}\right) = 0  \\[2pt] \)

    47. \( \cot (2 \pi x ) = -1 \\[2pt]  \)

    48. \(  \cot \left(\dfrac{\pi }{6} x \right) = \sqrt{3}  \\[2pt] \)

    Answers to odd exercises.
    5. \(\dfrac{5\pi}{4}\), \(\dfrac{7\pi}{4}\)     7. \(\dfrac{\pi}{2}\)     9. \(\dfrac{\pi}{3}\), \(\dfrac{5\pi}{3}\)     11. \(\dfrac{\pi}{2}\), \(\dfrac{3\pi}{2}\)     13. \(\dfrac{\pi }{4}, \dfrac{5\pi }{4}\)     15.  \(\dfrac{\pi }{6}, \dfrac{7\pi }{6}\)    17. \(\dfrac{4\pi}{3}\), \(\dfrac{5\pi}{3}\)      19. \(\dfrac{3\pi }{4}, \dfrac{7\pi }{4}\)

    \(k\)  below represents any integer         

    21. \(\dfrac{7 \pi}{6} + 2 \pi k\), \(\dfrac{11\pi}{6} + 2 \pi k\);  \( \quad\)  \( \dfrac{7 \pi}{6},\)  \(\dfrac{11\pi}{6},\)   \( \dfrac{19 \pi}{6},\)  \(\dfrac{23\pi}{6} \\[2pt] \)     
    23. \(\dfrac{ \pi}{12} + \dfrac{ 2\pi}{3} k\), \(\dfrac{ \pi}{4} + \dfrac{ 2\pi}{3} k\);  \( \quad\)  \( \dfrac{ \pi}{12},\)  \(\dfrac{\pi}{4},\)   \( \dfrac{3 \pi}{4},\)  \(\dfrac{11\pi}{12} \\[2pt] \) 
    25. \(\dfrac{2 \pi}{3} + 4 \pi k\), \(\dfrac{4\pi}{3} + 4 \pi k\);  \( \quad\)  \( \dfrac{2 \pi}{3},\)  \(\dfrac{4\pi}{3},\)   \( \dfrac{14 \pi}{3},\)  \(\dfrac{16\pi}{3} \\[2pt] \) 
    27. \(-\dfrac{2 }{3} + \dfrac{4}{3}k \);  \( \quad\)  \( \dfrac{2}{3},\)  \(2,\)    \( \dfrac{10}{3},\)  \( \dfrac{14}{3} \\[2pt] \) 
    29. \(\dfrac{7}{12} + k \),  \( \dfrac{11}{12} + k \);  \( \quad\)  \( \dfrac{7}{12}, \)   \( \dfrac{11}{12}, \)   \( \dfrac{19}{12}, \)   \( \dfrac{23}{12}  \\[2pt] \)

    31. \(\dfrac{\pi}{4} + 2 \pi k\), \(\dfrac{7\pi}{4} + 2 \pi k\);  \( \quad\)  \( \dfrac{\pi}{4}, \)   \( \dfrac{7\pi}{4}, \)   \( \dfrac{9\pi}{4}, \)   \( \dfrac{15\pi}{4} \\[2pt]  \)
    33. \(\dfrac{1}{6} +  k\), \(\dfrac{5}{6} + k\);  \( \quad\)  \( \dfrac{1}{6}, \)  \( \dfrac{5}{6}, \)  \( \dfrac{7}{6}, \)  \( \dfrac{11}{6}  \\[2pt] \)   

    35.  \( 4 +  8k\);     \( 4\), \( 12\),  \( 20\),  \( 28 \\[2pt] \)
    37.  \(\dfrac{13}{36} + \dfrac{2 }{3} k\), \(\dfrac{17}{36} + \dfrac{2 }{3} k\);  \( \quad\)  \( \dfrac{13}{36},\)  \(\dfrac{17}{36},\)    \( \dfrac{37}{36},\)  \( \dfrac{41}{36} \\[2pt] \)
    39. \(\dfrac{2\pi}{9} + \dfrac{2 \pi}{3} k\), \(\dfrac{4\pi}{9} + \dfrac{2 \pi}{3} k\);  \( \quad\)  \( \dfrac{2 \pi}{9},\)   \( \dfrac{4 \pi}{9},\)   \( \dfrac{8 \pi}{9},\)   \( \dfrac{10 \pi}{9} \\[2pt] \) 

    41. \(- \dfrac{\pi}{18} + \dfrac{\pi}{3} k\);  \( \quad\)  \( \dfrac{5 \pi}{18},\)   \( \dfrac{ 11\pi}{18},\)   \( \dfrac{17 \pi}{18},\)   \( \dfrac{ 23\pi}{18} \\[2pt] \)
    43. \(\dfrac{3\pi}{4} + 3 \pi k\);  \( \quad\)  \( \dfrac{3\pi}{4}, \)   \( \dfrac{15\pi}{4}, \)   \( \dfrac{27\pi}{4}, \)   \( \dfrac{39\pi}{4} \\[2pt]  \)  
    45.  \(\dfrac{\pi}{12} + \dfrac{\pi}{2} k\);  \( \quad\)  \( \dfrac{\pi}{12}, \)   \( \dfrac{7\pi}{12}, \)   \( \dfrac{13\pi}{12}, \)   \( 19\dfrac{\pi}{12} \\[2pt]  \)    
    47.  \(\dfrac{3}{8} + \dfrac{k}{2} \);  \( \quad\)  \( \dfrac{3}{8}, \) \( \dfrac{7}{8}, \) \( \dfrac{11}{8}, \) \( \dfrac{15}{8} \\[2pt] \)

    C: Quadratic Equations - Special Angle Solutions

    Exercise \(\PageIndex{C}\)

    \( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Give exact answers.

    51. \(\sin ^{2} x=\dfrac{1}{4}\)

    52. \(4\sin^2 x-2=0\)

    53. \(\sin^3 t=\sin t\)

    54. \(\sin^2 x+\sin x-2=0\)

    55. \(2\sin ^{2} w+3\sin w+1=0\) 

    56. \(2\sin ^{2} x+3\sin x-2=0\) 

    57. \(\csc^2 x-4=0\)

    59. \(\cos ^{2} \theta =\dfrac{1}{2}\)

    60. \(4\cos^2 x-3=0\)

    61. \(\cos^3 t=\cos t\)

    62. \(2\cos ^{2} t+\cos (t)=1\) 

    63. \(\cos^2 x-2\cos x-3=0\)

    64. \(6\cos ^{2}(\theta )=4-5\cos (\theta )\)

    65. \(\sec^2 x =1\)

    67 \( \tan^2 \theta = 3 \)

    68. \( 3\tan^2 \theta = 1 \)

    69. \(\tan ^{3} (x)=3\tan (x)\)

    70. \(\tan ^{5} (x)=\tan (x)\)

    71. \( 9 \tan ^{5}(x)-\tan (x)=0\)

    72. \(\tan^2 x-\sqrt{3}\tan x=0\)

    73. \(\cot^2 x=-\cot x\)

    Answers to odd exercises

    51. \(\dfrac{\pi}{6}\),  \(\dfrac{5\pi}{6}\),  \(\dfrac{7\pi}{6}\),  \(\dfrac{11\pi}{6}\)

    53.  \(0, \; \pi, \; \dfrac{\pi}{2}, \; \dfrac{3\pi}{2} \)

    55. \(\dfrac{3\pi}{2}\),  \(\dfrac{7\pi}{6}\),  \(\dfrac{11\pi}{6}\)     

    57. \(\dfrac{\pi }{6}, \; \dfrac{5\pi }{6}, \; \dfrac{7\pi }{6}, \; \dfrac{11\pi }{6}\)

    59. \(\dfrac{\pi }{4}, \; \dfrac{3\pi }{4}, \; \dfrac{5\pi }{4}, \; \dfrac{7\pi }{4}\)

    61. \(0, \; \dfrac{\pi }{2}, \; \pi , \; \dfrac{3\pi }{2}\)

    63. \(\pi\)

    65. \(0, \;  \pi \) 

    67. \(\dfrac{\pi}{3}\),  \(\dfrac{2\pi}{3},  \dfrac{4\pi}{3}\), \(\dfrac{5\pi}{3}\)

    69. 0, \(\dfrac{\pi}{3}\), \(\dfrac{2\pi}{3}\), \(\pi\), \(\dfrac{4\pi}{3}\), \(\dfrac{5\pi}{3}\)

    71.  0, \(\dfrac{\pi}{6}\), \(\dfrac{5\pi}{6}\), \(\pi\), \(\dfrac{7\pi}{6}\), \(\dfrac{11\pi}{6}\)

    73. \( \dfrac{\pi }{2} \),  \(\dfrac{3\pi }{2} \),  \( \dfrac{3\pi }{4}, \) \( \dfrac{7\pi }{4}\)

    \( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Give exact answers. Use fundamental identities as needed.

    79. \(\sin^2 x(1-\sin^2 x)+\cos^2 x(1-\sin^2 x)=0\)

    80. \(\sin^2 x-\cos^2 x-\sin x=0\)

    81. \(\sin^2 x-\cos^2 x-1=0\)

    82. \(\sin^2 x-\cos^2 x-\cos x=1\)

    83. \(2\cos^2 x+3\sin x-3=0\)

    84. \(\cos^2 x-2\sin x-2=0\)

    85. \(2\sin^2 x-\cos x-1=0\)

    86. \(2\sin^2 x-\cos x-2=0\)

    87. \(4\sin \left(x\right)\cos \left(x\right)+2\sin \left(x\right)-2\cos \left(x\right)-1=0\) 

    88. \(2\sin \left(x\right)\cos \left(x\right)-\sin \left(x\right)+2\cos \left(x\right)-1=0\)

    89. \(\sec \left(x\right)\sin \left(x\right)-2\sin \left(x\right)= 0\)

    90. \(\dfrac{1}{\sec ^2 x}+2+\sin ^2 x+4\cos ^2 x=4\)

    91. \( \cos (x) = \sin(-x) \)

    92. \( \tan (x)\sin (x)  = 3\cos(x) \)

    93. \( \tan (x) = \cot(x) \)

    94. \(\tan^2(x)=-1+2\tan(-x)\)

    95. \(\tan \left(x\right)\sin \left(x\right)-\sin \left(x\right)=0\)

    96. \(\tan(x)-2\sin(x)\tan(x)=0\)

    97. \(2\tan ^{2} \left(t\right)=3\sec \left(t\right)\)

    98. \( \sec x = \tan x - 1\)

    99. \(  \csc x = 1 - \cot x \)

    Answers to odd exercises

    79. \(\dfrac{\pi }{2}, \dfrac{3\pi }{2}\)

    81. \(\dfrac{\pi}{2}\), \(\dfrac{3\pi}{2}\)

    83. \(\dfrac{\pi}{6}\), \(\dfrac{5\pi}{6}\), \(\dfrac{\pi}{2}\)

    85. \(\dfrac{\pi}{3}\), \(\pi\), \(\dfrac{5\pi}{3}\)

    87. \(\dfrac{\pi}{6}\), \(\dfrac{2\pi}{3}\), \(\dfrac{5\pi}{6}\), \(\dfrac{4\pi}{3}\)

    89. 0, \(\pi\), \(\dfrac{\pi}{3}\), \(\dfrac{5\pi}{3}\)

    91.  \(\dfrac{3\pi}{4}\),  \(\dfrac{7\pi}{4}\)  

    93.  \(\dfrac{\pi}{4}\),  \(\dfrac{3\pi}{4}\), \(\dfrac{5\pi}{4}\), \(\dfrac{7\pi}{4}\) 

    95.  0, \(\pi\), \(\dfrac{\pi}{4}\),  \(\dfrac{5\pi}{4}\)

    97. \(\dfrac{\pi}{3}\), \(\dfrac{5\pi}{3}\)

    99. \(\dfrac{\pi}{2}\) 

    D: Use a calculator to solve linear equations

    Exercise \(\PageIndex{D}\)

    \( \bigstar \) Find all solutions on the interval \(0\le x<2\pi\).

    101. \(\sin \left(x\right)=0.27\)

    102. \(\sin \left(x\right)= -0.48\)

    103. \(\sin \left(x\right)= -0.58\)

    104. \(\cos \left(x\right)=-0.34\)

    105. \(\cos \left(x\right)=-0.55\)

    106. \(\cos \left(x\right)= 0.28\)

    107. \(\tan \left(x\right)= 0.71\)

    108. \(\tan \left(x\right)=-4.73\)

    \( \bigstar \) Find the first two positive solutions

    111. \(\csc \left(2x\right)-9=0\)

    112. \(\sec \left(2\theta \right)=3\)

     

     

    115. \(7\sin \left(6x\right)=2\)

    116. \(7\sin \left(5x\right)= 6\)

    117. \(3\sin \left(\dfrac{\pi }{4} x\right)=2\)

    118. \(7\sin \left(\dfrac{\pi }{5} x\right)=6\)

    119. \(5\cos \left(3x\right)=-3\)

    120. \(3\cos \left(4x\right)=2\)

    121. \(5\cos \left(\dfrac{\pi }{3} x\right)=1\)

    122. \(3\cos \left(\dfrac{\pi }{2} x\right)=-2\)

     

    \( \bigstar \) Use a calculator to find all solutions to four decimal places.

    131. \(\tan x=-0.34\)   132. \(\sin x=-0.55\)
    133. \(3\cos \left(\dfrac{\pi }{5} x\right)=2\) 134. \(8\cos \left(\dfrac{\pi }{2} x\right)=6\) 135. \(7\sin \left(3t\right)=-2\) 136. \(4\sin \left(4t\right)=1\)
    Answers to odd exercises.

    101.  \(0.2734,\; 2.8682\) \( \quad \)  103.  \(3.7603,\; 5.6645\) \( \quad \)  105.  \(2.1532,\; 4.1300\) \( \quad \)  107.  \(0.6174,\; 3.7590\)       

    111.  \(0.056,\; 1.515,\; 3.197,\; 4.657\) \( \quad \)  115.  \(0.04829,\; 0.47531\)     
    117.  \(0.9291,\; 3.0709\) \( \quad \)  119.  \(0.7381,\; 1.3563\) \( \quad \)  121.  \(1.3077,\; 4.6923\)

    131.  \(\pi k-0.3277\) \( \quad \)  133.  \(0.1339 + 10k\)  and \(8.6614 + 10k\), where \(k\) is an integer     
    135.  \(1.1438 + \dfrac{2\pi}{3} k\)  and \(1.9978 + \dfrac{2\pi}{3} k\), where \(k\) is an integer

    E: Use calculator to Solve Quadratic Equations 

    Exercise \(\PageIndex{E}\)

    \( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Use the quadratic formula if the equations do not factor. 

    147. \(10\sin \left(x\right)\cos \left(x\right)=6\cos \left(x\right)\)

    148. \(-3\sin \left(t\right)=15\cos \left(t\right)\sin \left(t\right)\)

    149. \(\sec ^{2} x=7\)

    150. \(\csc ^{2} t=3\)

    151. \(4\cos ^{2} (x)-4=15\cos \left(x\right)\)

    152. \(8\sin ^{2} x+6\sin \left(x\right)+1=0\)

    153. \(\sin^2 x-2\sin x-4=0\)

    154. \(9\sin \left(w\right)-2=4\sin ^{2} (w)\)

    155. \(\tan^2 x+3\tan x-3=0\)

    156. \(6\sin^2 x-5\sin x+1=0\)

    157. \(2\tan^2 x+9\tan x-6=0\)

    158. \(6\tan^2 x+13\tan x=-6\)

    159. \(-\tan^2 x-\tan x-2=0\)

    160. \(5\cos^2 x+3\cos x-1=0\)

    161. \(2\cos^2 x-\cos x+15=0\)

    162. \(5\sin^2 x+2\sin x-1=0\)

    163. \(3\cos^2 x-3\cos x-2=0\)

    164. \(100\tan^2x+20\tan x-3=0\)

    165. \(\tan^2 x+5\tan x-1=0\)

    166. \(20\sin^2 x-27\sin x+7=0\)

    167. \(8\cos^2 x-2\cos x-1=0\)

    168. \(130\tan^2 x+69\tan x-130=0\)

    169. \(2\tan^2 x+7\tan x+6=0\)

    Answers to odd exercises.

    147.  \(\dfrac{\pi}{2}\), \(\dfrac{3\pi}{2}\), \(0.644, \; 2.498\)  \( \quad \)  149.  \(1.183, \; 1.958, \; 4.325, \; 5.100 \)

    151.  \(1.823, \; 4.460\) \( \quad \)  153.  There are no solutions.  \( \quad \)  155.  \(0.6694, \; 1.8287, \; 3.8110, \; 4.9703\)     
    157.  \(0.5326, \; 1.7648, \; 3.6742, \; 4.9064\)    \( \quad \)  159.  There are no solutions. \( \quad \)  161.  There are no solutions.      

    163.  \(\cos^{-1}\left(   \frac{3-\sqrt{33}}{3} \right ) \approx \; 2.0459, \;\; 2\pi -\cos^{-1}\left( \frac{3-\sqrt{33}}{3} \right)  \approx 4.2373\)

    165.  \(\tan^{-1}\left (\tfrac{\sqrt{29}-5 }{2} \right ), \pi +\tan^{-1}\left (\tfrac{ -\sqrt{29}-5 }{2} \right),\)   \(\pi +\tan^{-1}\left (\tfrac{\sqrt{29}-5}{2} \right ), 2\pi +\tan^{-1}\left (\tfrac{-\sqrt{29}-5}{2} \right )\)

    167.  \(\tfrac{\pi }{3}, \cos^{-1}\left ( -\tfrac{1}{4} \right ), 2\pi -\cos^{-1}\left ( -\tfrac{1}{4} \right ), \tfrac{5\pi }{3}\)

    169.  \(\pi +\tan^{-1}(-2), \pi +\tan^{-1}\left (-\tfrac{3}{2}\right ), 2\pi +\tan^{-1}(-2), 2\pi +\tan^{-1}\left (-\tfrac{3}{2} \right )\)

    \( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Use identities. Use the quadratic formula if the equations do not factor. 

    171. \(12\sin ^{2} \left(t\right)+\cos \left(t\right)-6=0\)

    172. \(6\cos ^{2} \left(x\right)+7\sin \left(x\right)-8=0\)

    173. \(\cos ^{2} \phi =-6\sin \phi\)

    174. \(\sin ^{2} t=\cos t\)

    175. \(\tan \left(x\right)-3\sin \left(x\right)= 0\)

    176. \(3\cos \left(x\right)=\cot \left(x\right)\)

    177. \(\sin^2 x+\cos^2 x=0\)

    178. \(\dfrac{2\tan x}{2-\sec ^2 x}-\sin^2 x=\cos^2 x \)

    179. \(\tan^2 x-\sec x=1\)

    180. \(\sin^2 x-2\cos^2 x=0\)

    181. \(12\sin^2 t+\cos t-6=0\)

    182. \(1-2\tan \left(w\right)=\tan ^{2} \left(w\right)\)

    183. \(\csc^2 x-3\csc x-4=0\)

    184. \(3\sec^2 x+2+\sin^2 x+\cos^2 x \\       =\tan^2 x\)

    185. \(2\cos^2 x-\sin^2 x-\cos x-5=0\)

    186. \(\tan^2 x-1-\sec^3 x \cos x=0\)

    Answers to odd exercises.

    171.  \(2.301, \;  3.983, \;  0.723, \;  5.560\)  \( \quad \)  173.  \(3.305, \;  6.120\) \( \quad \)  175.  \(0, \; \pi, \; 1.231, \; 5.052\) \( \quad \)  177.  There are no solutions.
    179.  \(1.0472,3.1416,5.2360\)  \( \quad \) 181.  \(\cos^{-1}\left ( \tfrac{3}{4} \right ), \cos^{-1}\left ( -\tfrac{2}{3} \right ), 2\pi -\cos^{-1}\left ( -\tfrac{2}{3} \right ), 2\pi -\cos^{-1}\left ( \tfrac{3}{4} \right )\)
    183.  \(\sin^{-1}\left ( \tfrac{1}{4} \right ), \pi -\sin^{-1}\left ( \tfrac{1}{4} \right ), \tfrac{3\pi }{2}\) \( \quad \)  185.  There are no solutions.

     


    6.2e: Exercises - Trig Equations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?