6.2e: Exercises - Trig Equations
- Page ID
- 73000
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Give all answers in radians unless otherwise indicated.
A: Concepts
Exercise \(\PageIndex{A}\)
1. Will there always be solutions to trigonometric function equations? If not, describe an equation that would not have a solution. Explain why or why not.
2. When solving a trigonometric equation involving more than one trig function, do we always want to try to rewrite the equation so it is expressed in terms of one trigonometric function? Why or why not?
3. When solving linear trig equations in terms of only sine or cosine, how do we know whether there will be solutions?
- Answers to odd exercises.
-
1. There will not always be solutions to trigonometric function equations. For a basic example, \(\cos(x)=-5\).
3. Rewrite the equation in the form \( \sin(u) = c\) or \( \cos(u) = c\). If \( |c| \le 1,\) then the equation will have a solution; otherwise it will not have a solution.
B: Linear Equations - Special Angle Solutions
Exercise \(\PageIndex{B}\)
\( \bigstar \) Find all solutions on the interval \(0\le \theta <2\pi\).
|
5. \(2\sin \left(\theta \right)=-\sqrt{2} \\[2pt] \) 6. \(2\sin \left(\theta \right)=\sqrt{3} \\[2pt] \) 7. \(\sin \left(\theta \right)=1 \\[2pt] \) 8. \(\sin \left(\theta \right)=0\) |
9. \(2\cos \left(\theta \right)=1 \\[2pt] \) 10. \(2\cos \left(\theta \right)=-\sqrt{2} \\[2pt] \) 11. \(\cos \left(\theta \right)=0 \\[2pt] \) 12. \(\cos \left(\theta \right)=1\) |
13. \(\tan x=1 \\[2pt] \) 14. \(\tan \theta=-1 \\[2pt] \) 15. \( \sqrt{3}\tan \theta=1 \\[2pt] \) 16. \( \sqrt{3} +\tan \theta=0\) |
17. \( \sqrt{3} \csc x+2= 0 \\[2pt]\) 18. \( \sqrt{3}\sec \theta+2 = 0 \\[2pt] \) 19. \( \cot x+1=0\) |
\( \bigstar \) State the general solution and the first four non-negative solutions.
|
21. \(2\sin \left(\theta \right) = -1 \\[2pt] \) 22. \(2\sin \left(\theta \right) = 1 \\[2pt] \) 23. \(2\sin \left(3\theta \right)= \sqrt{2} \\[2pt] \) 24. \(2\sin \left(3\pi\theta \right)=-\sqrt{2} \\[2pt] \) 25. \(2\sin \left(\dfrac{\theta}{2} \right)=\sqrt{3} \\[2pt] \) 26. \(\sin \left(\dfrac{2\pi }{3} \theta \right)=-1 \\[2pt] \) 27. \(\sin \left(\dfrac{3\pi }{4} \theta + \dfrac{\pi}{2}\right)=0 \\[2pt] \) 28. \( 2 \sin \left( 4 \pi \theta -\dfrac{\pi}{3} \right)= -\sqrt{3} \\[2pt] \) 29. \( \csc \left(2\pi x \right)=-2 \\[2pt] \) 30. \( \csc \left(\dfrac{x }{3} \right)=\sqrt{ 2} \\[2pt] \) |
31. \(2\cos \left(\theta \right)=\sqrt{2} \\[2pt] \) 32. \(2\cos \left(\theta \right)=-1 \\[2pt] \) 33. \(2\cos \left(2 \pi \theta \right)=1 \\[2pt] \) 34. \(2\cos \left(3 \theta \right)=-\sqrt{2} \\[2pt] \) 35. \(\cos \left(\dfrac{\pi }{4} \theta \right)=-1 \\[2pt] \) 36. \(2\cos \left( \dfrac{\theta}{3} \right)=\sqrt{3} \\[2pt] \) 37. \( 2 \cos \left(3 \pi \theta - \dfrac{\pi}{4} \right)=-\sqrt{3} \\[2pt] \) 38. \(\cos \left(\dfrac{\theta}{2} +\dfrac{\pi}{6} \right)=0 \\[2pt] \) 39. \(\sec \left( 3x \right)=-2 \\[2pt] \) 40. \( \sec \left(\dfrac{\pi }{5} x \right)=\sqrt{2} \\[2pt] \) |
41. \( \sqrt{3} \tan ( 3 x ) = -1 \\[2pt] \) 42. \( \tan ( \pi x ) = \sqrt{3} \\[2pt] \) 43. \( \tan\left(\dfrac{\theta}{3} \right) = 1 \\[2pt] \) 44. \( \tan\left(\dfrac{2\pi }{3} \theta \right) = -1 \\[2pt] \) 45. \( \tan\left(2x+ \dfrac{\pi }{2} \right) = -\sqrt{3} \\[2pt] \) 46. \( \tan\left(\dfrac{\pi }{6} \theta -\dfrac{\pi}{9}\right) = 0 \\[2pt] \) 47. \( \cot (2 \pi x ) = -1 \\[2pt] \) 48. \( \cot \left(\dfrac{\pi }{6} x \right) = \sqrt{3} \\[2pt] \) |
- Answers to odd exercises.
-
5. \(\dfrac{5\pi}{4}\), \(\dfrac{7\pi}{4}\) 7. \(\dfrac{\pi}{2}\) 9. \(\dfrac{\pi}{3}\), \(\dfrac{5\pi}{3}\) 11. \(\dfrac{\pi}{2}\), \(\dfrac{3\pi}{2}\) 13. \(\dfrac{\pi }{4}, \dfrac{5\pi }{4}\) 15. \(\dfrac{\pi }{6}, \dfrac{7\pi }{6}\) 17. \(\dfrac{4\pi}{3}\), \(\dfrac{5\pi}{3}\) 19. \(\dfrac{3\pi }{4}, \dfrac{7\pi }{4}\) \(k\) below represents any integer
21. \(\dfrac{7 \pi}{6} + 2 \pi k\), \(\dfrac{11\pi}{6} + 2 \pi k\); \( \quad\) \( \dfrac{7 \pi}{6},\) \(\dfrac{11\pi}{6},\) \( \dfrac{19 \pi}{6},\) \(\dfrac{23\pi}{6} \\[2pt] \)
23. \(\dfrac{ \pi}{12} + \dfrac{ 2\pi}{3} k\), \(\dfrac{ \pi}{4} + \dfrac{ 2\pi}{3} k\); \( \quad\) \( \dfrac{ \pi}{12},\) \(\dfrac{\pi}{4},\) \( \dfrac{3 \pi}{4},\) \(\dfrac{11\pi}{12} \\[2pt] \)
25. \(\dfrac{2 \pi}{3} + 4 \pi k\), \(\dfrac{4\pi}{3} + 4 \pi k\); \( \quad\) \( \dfrac{2 \pi}{3},\) \(\dfrac{4\pi}{3},\) \( \dfrac{14 \pi}{3},\) \(\dfrac{16\pi}{3} \\[2pt] \)
27. \(-\dfrac{2 }{3} + \dfrac{4}{3}k \); \( \quad\) \( \dfrac{2}{3},\) \(2,\) \( \dfrac{10}{3},\) \( \dfrac{14}{3} \\[2pt] \)
29. \(\dfrac{7}{12} + k \), \( \dfrac{11}{12} + k \); \( \quad\) \( \dfrac{7}{12}, \) \( \dfrac{11}{12}, \) \( \dfrac{19}{12}, \) \( \dfrac{23}{12} \\[2pt] \)31. \(\dfrac{\pi}{4} + 2 \pi k\), \(\dfrac{7\pi}{4} + 2 \pi k\); \( \quad\) \( \dfrac{\pi}{4}, \) \( \dfrac{7\pi}{4}, \) \( \dfrac{9\pi}{4}, \) \( \dfrac{15\pi}{4} \\[2pt] \)
33. \(\dfrac{1}{6} + k\), \(\dfrac{5}{6} + k\); \( \quad\) \( \dfrac{1}{6}, \) \( \dfrac{5}{6}, \) \( \dfrac{7}{6}, \) \( \dfrac{11}{6} \\[2pt] \)35. \( 4 + 8k\); \( 4\), \( 12\), \( 20\), \( 28 \\[2pt] \)
37. \(\dfrac{13}{36} + \dfrac{2 }{3} k\), \(\dfrac{17}{36} + \dfrac{2 }{3} k\); \( \quad\) \( \dfrac{13}{36},\) \(\dfrac{17}{36},\) \( \dfrac{37}{36},\) \( \dfrac{41}{36} \\[2pt] \)
39. \(\dfrac{2\pi}{9} + \dfrac{2 \pi}{3} k\), \(\dfrac{4\pi}{9} + \dfrac{2 \pi}{3} k\); \( \quad\) \( \dfrac{2 \pi}{9},\) \( \dfrac{4 \pi}{9},\) \( \dfrac{8 \pi}{9},\) \( \dfrac{10 \pi}{9} \\[2pt] \)41. \(- \dfrac{\pi}{18} + \dfrac{\pi}{3} k\); \( \quad\) \( \dfrac{5 \pi}{18},\) \( \dfrac{ 11\pi}{18},\) \( \dfrac{17 \pi}{18},\) \( \dfrac{ 23\pi}{18} \\[2pt] \)
43. \(\dfrac{3\pi}{4} + 3 \pi k\); \( \quad\) \( \dfrac{3\pi}{4}, \) \( \dfrac{15\pi}{4}, \) \( \dfrac{27\pi}{4}, \) \( \dfrac{39\pi}{4} \\[2pt] \)
45. \(\dfrac{\pi}{12} + \dfrac{\pi}{2} k\); \( \quad\) \( \dfrac{\pi}{12}, \) \( \dfrac{7\pi}{12}, \) \( \dfrac{13\pi}{12}, \) \( 19\dfrac{\pi}{12} \\[2pt] \)
47. \(\dfrac{3}{8} + \dfrac{k}{2} \); \( \quad\) \( \dfrac{3}{8}, \) \( \dfrac{7}{8}, \) \( \dfrac{11}{8}, \) \( \dfrac{15}{8} \\[2pt] \)
C: Quadratic Equations - Special Angle Solutions
Exercise \(\PageIndex{C}\)
\( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Give exact answers.
|
51. \(\sin ^{2} x=\dfrac{1}{4}\) 52. \(4\sin^2 x-2=0\) 53. \(\sin^3 t=\sin t\) 54. \(\sin^2 x+\sin x-2=0\) 55. \(2\sin ^{2} w+3\sin w+1=0\) 56. \(2\sin ^{2} x+3\sin x-2=0\) 57. \(\csc^2 x-4=0\) |
59. \(\cos ^{2} \theta =\dfrac{1}{2}\) 60. \(4\cos^2 x-3=0\) 61. \(\cos^3 t=\cos t\) 62. \(2\cos ^{2} t+\cos (t)=1\) 63. \(\cos^2 x-2\cos x-3=0\) 64. \(6\cos ^{2}(\theta )=4-5\cos (\theta )\) 65. \(\sec^2 x =1\) |
67 \( \tan^2 \theta = 3 \) 68. \( 3\tan^2 \theta = 1 \) 69. \(\tan ^{3} (x)=3\tan (x)\) 70. \(\tan ^{5} (x)=\tan (x)\) 71. \( 9 \tan ^{5}(x)-\tan (x)=0\) 72. \(\tan^2 x-\sqrt{3}\tan x=0\) 73. \(\cot^2 x=-\cot x\) |
- Answers to odd exercises
-
51. \(\dfrac{\pi}{6}\), \(\dfrac{5\pi}{6}\), \(\dfrac{7\pi}{6}\), \(\dfrac{11\pi}{6}\)
53. \(0, \; \pi, \; \dfrac{\pi}{2}, \; \dfrac{3\pi}{2} \)
55. \(\dfrac{3\pi}{2}\), \(\dfrac{7\pi}{6}\), \(\dfrac{11\pi}{6}\)
57. \(\dfrac{\pi }{6}, \; \dfrac{5\pi }{6}, \; \dfrac{7\pi }{6}, \; \dfrac{11\pi }{6}\)
59. \(\dfrac{\pi }{4}, \; \dfrac{3\pi }{4}, \; \dfrac{5\pi }{4}, \; \dfrac{7\pi }{4}\)
61. \(0, \; \dfrac{\pi }{2}, \; \pi , \; \dfrac{3\pi }{2}\)
63. \(\pi\)
65. \(0, \; \pi \)
67. \(\dfrac{\pi}{3}\), \(\dfrac{2\pi}{3}, \dfrac{4\pi}{3}\), \(\dfrac{5\pi}{3}\)
69. 0, \(\dfrac{\pi}{3}\), \(\dfrac{2\pi}{3}\), \(\pi\), \(\dfrac{4\pi}{3}\), \(\dfrac{5\pi}{3}\)
71. 0, \(\dfrac{\pi}{6}\), \(\dfrac{5\pi}{6}\), \(\pi\), \(\dfrac{7\pi}{6}\), \(\dfrac{11\pi}{6}\)
73. \( \dfrac{\pi }{2} \), \(\dfrac{3\pi }{2} \), \( \dfrac{3\pi }{4}, \) \( \dfrac{7\pi }{4}\)
\( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Give exact answers. Use fundamental identities as needed.
|
79. \(\sin^2 x(1-\sin^2 x)+\cos^2 x(1-\sin^2 x)=0\) 80. \(\sin^2 x-\cos^2 x-\sin x=0\) 81. \(\sin^2 x-\cos^2 x-1=0\) 82. \(\sin^2 x-\cos^2 x-\cos x=1\) 83. \(2\cos^2 x+3\sin x-3=0\) 84. \(\cos^2 x-2\sin x-2=0\) 85. \(2\sin^2 x-\cos x-1=0\) 86. \(2\sin^2 x-\cos x-2=0\) 87. \(4\sin \left(x\right)\cos \left(x\right)+2\sin \left(x\right)-2\cos \left(x\right)-1=0\) 88. \(2\sin \left(x\right)\cos \left(x\right)-\sin \left(x\right)+2\cos \left(x\right)-1=0\) 89. \(\sec \left(x\right)\sin \left(x\right)-2\sin \left(x\right)= 0\) |
90. \(\dfrac{1}{\sec ^2 x}+2+\sin ^2 x+4\cos ^2 x=4\) 91. \( \cos (x) = \sin(-x) \) 92. \( \tan (x)\sin (x) = 3\cos(x) \) 93. \( \tan (x) = \cot(x) \) 94. \(\tan^2(x)=-1+2\tan(-x)\) 95. \(\tan \left(x\right)\sin \left(x\right)-\sin \left(x\right)=0\) 96. \(\tan(x)-2\sin(x)\tan(x)=0\) 97. \(2\tan ^{2} \left(t\right)=3\sec \left(t\right)\) 98. \( \sec x = \tan x - 1\) 99. \( \csc x = 1 - \cot x \) |
- Answers to odd exercises
-
79. \(\dfrac{\pi }{2}, \dfrac{3\pi }{2}\)
81. \(\dfrac{\pi}{2}\), \(\dfrac{3\pi}{2}\)
83. \(\dfrac{\pi}{6}\), \(\dfrac{5\pi}{6}\), \(\dfrac{\pi}{2}\)
85. \(\dfrac{\pi}{3}\), \(\pi\), \(\dfrac{5\pi}{3}\)
87. \(\dfrac{\pi}{6}\), \(\dfrac{2\pi}{3}\), \(\dfrac{5\pi}{6}\), \(\dfrac{4\pi}{3}\)
89. 0, \(\pi\), \(\dfrac{\pi}{3}\), \(\dfrac{5\pi}{3}\)
91. \(\dfrac{3\pi}{4}\), \(\dfrac{7\pi}{4}\)
93. \(\dfrac{\pi}{4}\), \(\dfrac{3\pi}{4}\), \(\dfrac{5\pi}{4}\), \(\dfrac{7\pi}{4}\)
95. 0, \(\pi\), \(\dfrac{\pi}{4}\), \(\dfrac{5\pi}{4}\)
97. \(\dfrac{\pi}{3}\), \(\dfrac{5\pi}{3}\)
99. \(\dfrac{\pi}{2}\)
D: Use a calculator to solve linear equations
Exercise \(\PageIndex{D}\)
\( \bigstar \) Find all solutions on the interval \(0\le x<2\pi\).
|
101. \(\sin \left(x\right)=0.27\) 102. \(\sin \left(x\right)= -0.48\) |
103. \(\sin \left(x\right)= -0.58\) 104. \(\cos \left(x\right)=-0.34\) |
105. \(\cos \left(x\right)=-0.55\) 106. \(\cos \left(x\right)= 0.28\) |
107. \(\tan \left(x\right)= 0.71\) 108. \(\tan \left(x\right)=-4.73\) |
\( \bigstar \) Find the first two positive solutions
|
111. \(\csc \left(2x\right)-9=0\) 112. \(\sec \left(2\theta \right)=3\)
|
115. \(7\sin \left(6x\right)=2\) 116. \(7\sin \left(5x\right)= 6\) 117. \(3\sin \left(\dfrac{\pi }{4} x\right)=2\) 118. \(7\sin \left(\dfrac{\pi }{5} x\right)=6\) |
119. \(5\cos \left(3x\right)=-3\) 120. \(3\cos \left(4x\right)=2\) 121. \(5\cos \left(\dfrac{\pi }{3} x\right)=1\) 122. \(3\cos \left(\dfrac{\pi }{2} x\right)=-2\) |
|
\( \bigstar \) Use a calculator to find all solutions to four decimal places.
| 131. \(\tan x=-0.34\) | 132. \(\sin x=-0.55\) |
| 133. \(3\cos \left(\dfrac{\pi }{5} x\right)=2\) | 134. \(8\cos \left(\dfrac{\pi }{2} x\right)=6\) | 135. \(7\sin \left(3t\right)=-2\) | 136. \(4\sin \left(4t\right)=1\) |
- Answers to odd exercises.
-
101. \(0.2734,\; 2.8682\) \( \quad \) 103. \(3.7603,\; 5.6645\) \( \quad \) 105. \(2.1532,\; 4.1300\) \( \quad \) 107. \(0.6174,\; 3.7590\)
111. \(0.056,\; 1.515,\; 3.197,\; 4.657\) \( \quad \) 115. \(0.04829,\; 0.47531\)
117. \(0.9291,\; 3.0709\) \( \quad \) 119. \(0.7381,\; 1.3563\) \( \quad \) 121. \(1.3077,\; 4.6923\)131. \(\pi k-0.3277\) \( \quad \) 133. \(0.1339 + 10k\) and \(8.6614 + 10k\), where \(k\) is an integer
135. \(1.1438 + \dfrac{2\pi}{3} k\) and \(1.9978 + \dfrac{2\pi}{3} k\), where \(k\) is an integer
E: Use calculator to Solve Quadratic Equations
Exercise \(\PageIndex{E}\)
\( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Use the quadratic formula if the equations do not factor.
|
147. \(10\sin \left(x\right)\cos \left(x\right)=6\cos \left(x\right)\) 148. \(-3\sin \left(t\right)=15\cos \left(t\right)\sin \left(t\right)\) 149. \(\sec ^{2} x=7\) 150. \(\csc ^{2} t=3\) 151. \(4\cos ^{2} (x)-4=15\cos \left(x\right)\) 152. \(8\sin ^{2} x+6\sin \left(x\right)+1=0\) 153. \(\sin^2 x-2\sin x-4=0\) 154. \(9\sin \left(w\right)-2=4\sin ^{2} (w)\) |
155. \(\tan^2 x+3\tan x-3=0\) 156. \(6\sin^2 x-5\sin x+1=0\) 157. \(2\tan^2 x+9\tan x-6=0\) 158. \(6\tan^2 x+13\tan x=-6\) 159. \(-\tan^2 x-\tan x-2=0\) 160. \(5\cos^2 x+3\cos x-1=0\) 161. \(2\cos^2 x-\cos x+15=0\) 162. \(5\sin^2 x+2\sin x-1=0\) |
163. \(3\cos^2 x-3\cos x-2=0\) 164. \(100\tan^2x+20\tan x-3=0\) 165. \(\tan^2 x+5\tan x-1=0\) 166. \(20\sin^2 x-27\sin x+7=0\) 167. \(8\cos^2 x-2\cos x-1=0\) 168. \(130\tan^2 x+69\tan x-130=0\) 169. \(2\tan^2 x+7\tan x+6=0\) |
- Answers to odd exercises.
-
147. \(\dfrac{\pi}{2}\), \(\dfrac{3\pi}{2}\), \(0.644, \; 2.498\) \( \quad \) 149. \(1.183, \; 1.958, \; 4.325, \; 5.100 \)
151. \(1.823, \; 4.460\) \( \quad \) 153. There are no solutions. \( \quad \) 155. \(0.6694, \; 1.8287, \; 3.8110, \; 4.9703\)
157. \(0.5326, \; 1.7648, \; 3.6742, \; 4.9064\) \( \quad \) 159. There are no solutions. \( \quad \) 161. There are no solutions.163. \(\cos^{-1}\left( \frac{3-\sqrt{33}}{3} \right ) \approx \; 2.0459, \;\; 2\pi -\cos^{-1}\left( \frac{3-\sqrt{33}}{3} \right) \approx 4.2373\)
165. \(\tan^{-1}\left (\tfrac{\sqrt{29}-5 }{2} \right ), \pi +\tan^{-1}\left (\tfrac{ -\sqrt{29}-5 }{2} \right),\) \(\pi +\tan^{-1}\left (\tfrac{\sqrt{29}-5}{2} \right ), 2\pi +\tan^{-1}\left (\tfrac{-\sqrt{29}-5}{2} \right )\)
167. \(\tfrac{\pi }{3}, \cos^{-1}\left ( -\tfrac{1}{4} \right ), 2\pi -\cos^{-1}\left ( -\tfrac{1}{4} \right ), \tfrac{5\pi }{3}\)
169. \(\pi +\tan^{-1}(-2), \pi +\tan^{-1}\left (-\tfrac{3}{2}\right ), 2\pi +\tan^{-1}(-2), 2\pi +\tan^{-1}\left (-\tfrac{3}{2} \right )\)
\( \bigstar \) Find all solutions on the interval \([0, 2\pi )\). Use identities. Use the quadratic formula if the equations do not factor.
|
171. \(12\sin ^{2} \left(t\right)+\cos \left(t\right)-6=0\) 172. \(6\cos ^{2} \left(x\right)+7\sin \left(x\right)-8=0\) 173. \(\cos ^{2} \phi =-6\sin \phi\) 174. \(\sin ^{2} t=\cos t\) 175. \(\tan \left(x\right)-3\sin \left(x\right)= 0\) 176. \(3\cos \left(x\right)=\cot \left(x\right)\) |
177. \(\sin^2 x+\cos^2 x=0\) 178. \(\dfrac{2\tan x}{2-\sec ^2 x}-\sin^2 x=\cos^2 x \) 179. \(\tan^2 x-\sec x=1\) 180. \(\sin^2 x-2\cos^2 x=0\) 181. \(12\sin^2 t+\cos t-6=0\) |
182. \(1-2\tan \left(w\right)=\tan ^{2} \left(w\right)\) 183. \(\csc^2 x-3\csc x-4=0\) 184. \(3\sec^2 x+2+\sin^2 x+\cos^2 x \\ =\tan^2 x\) 185. \(2\cos^2 x-\sin^2 x-\cos x-5=0\) 186. \(\tan^2 x-1-\sec^3 x \cos x=0\) |
- Answers to odd exercises.
-
171. \(2.301, \; 3.983, \; 0.723, \; 5.560\) \( \quad \) 173. \(3.305, \; 6.120\) \( \quad \) 175. \(0, \; \pi, \; 1.231, \; 5.052\) \( \quad \) 177. There are no solutions.
179. \(1.0472,3.1416,5.2360\) \( \quad \) 181. \(\cos^{-1}\left ( \tfrac{3}{4} \right ), \cos^{-1}\left ( -\tfrac{2}{3} \right ), 2\pi -\cos^{-1}\left ( -\tfrac{2}{3} \right ), 2\pi -\cos^{-1}\left ( \tfrac{3}{4} \right )\)
183. \(\sin^{-1}\left ( \tfrac{1}{4} \right ), \pi -\sin^{-1}\left ( \tfrac{1}{4} \right ), \tfrac{3\pi }{2}\) \( \quad \) 185. There are no solutions.

