Skip to main content
Mathematics LibreTexts

Table of Integrals

  • Page ID
    45688
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For this course, all work must be shown to obtain most of these integral forms. Of the integration formulas listed below, the only ones that can be applied without further work are #1 - 10, 15 - 17, and 49 and 50. And even these will require work to be shown if a substitution is involved.

    All others may be helpful for checking your final answers, but cannot be used to skip the necessary work to show you understand how to use the integration techniques taught in this course.

    As you look through these formulas, you should be able to recognize which integration technique was needed to obtain the general formula. It may be very useful for you to try to obtain the general formula yourself using the techniques we learn in this course.

    Basic Integrals

    1. \(\quad \displaystyle ∫u^n\,du=\frac{u^{n+1}}{n+1}+C,\quad n≠−1\)

    2. \(\quad \displaystyle ∫\frac{du}{u} =\ln |u|+C\)

    3. \(\quad \displaystyle ∫e^u\,du=e^u+C\)

    4. \(\quad \displaystyle ∫a^u\,du=\frac{a^u}{\ln a}+C\)

    5. \(\quad \displaystyle ∫\sin u\,du=−\cos u+C\)

    6. \(\quad \displaystyle ∫\cos u\,du=\sin u+C\)

    7. \(\quad \displaystyle ∫\sec^2u\,du=\tan u+C\)

    8. \(\quad \displaystyle ∫\csc^2u\,du=−\cot u+C\)

    9. \(\quad \displaystyle ∫\sec u\tan u\,du=\sec u+C\)

    10. \(\quad \displaystyle ∫\csc u\cot u\,du=−\csc u+C\)

    11. \(\quad \displaystyle ∫\tan u\,du=\ln |\sec u|+C\)

    12. \(\quad \displaystyle ∫\cot u\,du=\ln |\sin u|+C\)

    13. \(\quad \displaystyle ∫\sec u\,du=\ln |\sec u+\tan u|+C\)

    14. \(\quad \displaystyle ∫\csc u\,du=\ln |\csc u−\cot u|+C\)

    15. \(\quad \displaystyle ∫\frac{du}{\sqrt{a^2−u^2}}=\arcsin \left(\frac{u}{a}\right)+C\)

    16. \(\quad \displaystyle ∫\frac{du}{a^2+u^2}=\frac{1}{a}\arctan \left(\frac{u}{a}\right)+C\)

    17. \(\quad \displaystyle ∫\frac{du}{u\sqrt{u^2−a^2}}=\frac{1}{a}\text{arcsec} \left(\frac{|u|}{a}\right)+C\)

    Trigonometric Integrals

    18. \(\quad \displaystyle ∫\sin^2u\,du=\frac{1}{2}u−\frac{1}{4}\sin 2u+C\)

    19. \(\quad \displaystyle ∫\cos^2 u\,du=\frac{1}{2}u+\frac{1}{4}\sin 2u+C\)

    20. \(\quad \displaystyle ∫\tan^2 u\,du=\tan u−u+C\)

    21. \(\quad \displaystyle ∫\cot ^2 u\,du=−\cot u−u+C\)

    22. \(\quad \displaystyle ∫\sin^3 u\,du=−\frac{1}{3}(2+\sin^2u)\cos u+C\)

    23. \(\quad \displaystyle ∫\cos^3 u\,du=\frac{1}{3}(2+\cos^2 u)\sin u+C\)

    24. \(\quad \displaystyle ∫\tan^3 u\,du=\frac{1}{2}\tan^2 u+\ln |\cos u|+C\)

    25. \(\quad \displaystyle ∫\cot^3 u\,du=−\frac{1}{2}\cot^2 u−\ln |\sin u|+C\)

    26. \(\quad \displaystyle ∫\sec^3 u\,du=\frac{1}{2}\sec u\tan u+\frac{1}{2}\ln |\sec u+\tan u|+C\)

    27. \(\quad \displaystyle ∫\csc^3 u\,du=−\frac{1}{2}\csc u\cot u+\frac{1}{2}\ln |\csc u−\cot u|+C\)

    28. \(\quad \displaystyle ∫\sin^n u\,du=\frac{-1}{n}\sin^{n−1}u\cos u+\frac{n−1}{n}∫\sin^{n−2}u\,du\)

    29. \(\quad \displaystyle ∫\cos^n u\,du=\frac{1}{n}\cos^{n−1} u\sin u+\frac{n−1}{n}∫\cos^{n−2}u\,du\)

    30. \(\quad \displaystyle ∫\tan^n u\,du=\frac{1}{n-1}\tan^{n−1} u−∫\tan^{n−2} u\,du\)

    31. \(\quad \displaystyle ∫\cot^n u\,du=\frac{-1}{n-1}\cot^{n−1}u−∫\cot^{n−2}u\,du\)

    32. \(\quad \displaystyle ∫\sec^n u\,du=\frac{1}{n-1}\tan u\sec^{n−2}u+\frac{n-2}{n-1}∫\sec^{n−2}u\,du\)

    33. \(\quad \displaystyle ∫\csc^n u\,du=\frac{-1}{n-1}\cot u\csc^{n−2}u+\frac{n-2}{n-1}∫\csc^{n−2}u\,du\)

    34. \(\quad \displaystyle ∫\sin au\sin bu\,du=\frac{\sin (a−b)u}{2(a−b)}−\frac{\sin (a+b)u}{2(a+b)}+C\)

    35. \(\quad \displaystyle ∫\cos au\cos bu\,du=\frac{\sin (a−b)u}{2(a−b)}+\frac{\sin (a+b)u}{2(a+b)}+C\)

    36. \(\quad \displaystyle ∫\sin au\cos bu\,du=−\frac{\cos (a−b)u}{2(a−b)}−\frac{\cos (a+b)u}{2(a+b)}+C\)

    37. \(\quad \displaystyle ∫u\sin u\,du=\sin u−u\cos u+C\)

    38. \(\quad \displaystyle ∫u\cos u\,du=\cos u+u\sin u+C\)

    39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\)

    40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\)

    41. \(\quad \displaystyle ∫\sin^n u\cos^m u\,du=\) Use the methods for powers of sine and cosine

    Exponential and Logarithmic Integrals

    42. \(\quad \displaystyle ∫ue^{au}\,du=\frac{1}{a^2}(au−1)e^{au}+C\)

    43. \(\quad \displaystyle ∫u^ne^{au}\,du=\frac{1}{a}u^ne^{au}−\frac{n}{a}∫u^{n−1}e^{au}\,du\)

    44. \(\quad \displaystyle ∫e^{au}\sin bu\,du=\frac{e^{au}}{a^2+b^2}(a\sin bu−b\cos bu)+C\)

    45. \(\quad \displaystyle ∫e^{au}\cos bu\,du=\frac{e^{au}}{a^2+b^2}(a\cos bu+b\sin bu)+C\)

    46. \(\quad \displaystyle ∫\ln u\,du=u\ln u−u+C\)

    47. \(\quad \displaystyle ∫u^n\ln u\,du=\frac{u^{n+1}}{(n+1)^2}[(n+1)\ln u−1]+C\)

    48. \(\quad \displaystyle ∫\frac{1}{u\ln u}\,du=\ln |\ln u|+C\)

    Hyperbolic Integrals

    49. \(\quad \displaystyle ∫\sinh u\,du=\cosh u+C\)

    50. \(\quad \displaystyle ∫\cosh u\,du=\sinh u+C\)

    51. \(\quad \displaystyle ∫\tanh u\,du=\ln \cosh u+C\)

    52. \(\quad \displaystyle ∫\coth u\,du=\ln |\sinh u|+C\)

    53. \(\quad \displaystyle ∫\text{sech}\,u\,du=\arctan |\sinh u|+C\)

    54. \(\quad \displaystyle ∫\text{csch}\,u\,du=\ln ∣\tanh\frac{1}{2}u∣+C\)

    55. \(\quad \displaystyle ∫\text{sech}^2 u\,du=\tanh \,u+C\)

    56. \(\quad \displaystyle ∫\text{csch}^2 u\,du=−\coth \,u+C\)

    57. \(\quad \displaystyle ∫\text{sech} \,u\tanh u\,du=−\text{sech} \,u+C\)

    58. \(\quad \displaystyle ∫\text{csch} \,u\coth u\,du=−\text{csch} \,u+C\)

    Inverse Trigonometric Integrals

    59. \(\quad \displaystyle ∫\arcsin u\,du=u\arcsin u+\sqrt{1−u^2}+C\)

    60. \(\quad \displaystyle ∫\arccos u\,du=u\arccos u−\sqrt{1−u^2}+C\)

    61. \(\quad \displaystyle ∫\arctan u\,du=u\arctan u−\frac{1}{2}\ln (1+u^2)+C\)

    62. \(\quad \displaystyle ∫u\arcsin u\,du=\frac{2u^2−1}{4}\arcsin u+\frac{u\sqrt{1−u^2}}{4}+C\)

    63. \(\quad \displaystyle ∫u\arccos u\,du=\frac{2u^2−1}{4}\arccos u-\frac{u\sqrt{1−u^2}}{4}+C\)

    64. \(\quad \displaystyle ∫u\arctan u\,du=\frac{u^2+1}{2}\arctan u−\frac{u}{2}+C\)

    65. \(\quad \displaystyle ∫u^n\arcsin u\,du=\frac{1}{n+1}\left[u^{n+1}\arcsin u−∫\frac{u^{n+1}\,du}{\sqrt{1−u^2}}\right],\quad n≠−1\)

    66. \(\quad \displaystyle ∫u^n\arccos u\,du=\frac{1}{n+1}\left[u^{n+1}\arccos u+∫\frac{u^{n+1}\,du}{\sqrt{1−u^2}}\right],\quad n≠−1\)

    67. \(\quad \displaystyle ∫u^n\arctan u\,du=\frac{1}{n+1}\left[u^{n+1}\arctan u−∫\frac{u^{n+1}\,du}{1+u^2}\right],\quad n≠−1\)

    Integrals Involving a2 + u2, a > 0

    68. \(\quad \displaystyle ∫\sqrt{a^2+u^2}\,du=\frac{u}{2}\sqrt{a^2+u^2}+\frac{a^2}{2}\ln \left(u+\sqrt{a^2+u^2}\right)+C\)

    69. \(\quad \displaystyle ∫u^2\sqrt{a^2+u^2}\,du=\frac{u}{8}(a^2+2u^2)\sqrt{a^2+u^2}−\frac{a^4}{8}\ln \left(u+\sqrt{a^2+u^2}\right)+C\)

    70. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,du=\sqrt{a^2+u^2}−a\ln \left|\frac{a+\sqrt{a^2+u^2}}{u}\right|+C\)

    71. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u^2}\,du=−\frac{\sqrt{a^2+u^2}}{u}+\ln \left(u+\sqrt{a^2+u^2}\right)+C\)

    72. \(\quad \displaystyle ∫\frac{du}{\sqrt{a^2+u^2}}=\ln \left(u+\sqrt{a^2+u^2}\right)+C\)

    73. \(\quad \displaystyle ∫\frac{u^2}{\sqrt{a^2+u^2}}\,du=\frac{u}{2}\left(\sqrt{a^2+u^2}\right)−\frac{a^2}{2}\ln \left(u+\sqrt{a^2+u^2}\right)+C\)

    74. \(\quad \displaystyle ∫\frac{du}{u\sqrt{a^2+u^2}}=\frac{−1}{a}\ln \left|\frac{\sqrt{a^2+u^2}+a}{u}\right|+C\)

    75. \(\quad \displaystyle ∫\frac{du}{u^2\sqrt{a^2+u^2}}=−\frac{\sqrt{a^2+u^2}}{a^2u}+C\)

    76. \(\quad \displaystyle ∫\frac{du}{\left(a^2+u^2\right)^{3/2}}=\frac{u}{a^2\sqrt{a^2+u^2}}+C\)

    Integrals Involving u2a2, a > 0

    77. \(\quad \displaystyle ∫\sqrt{u^2−a^2}\,du=\frac{u}{2}\sqrt{u^2−a^2}−\frac{a^2}{2}\ln \left|u+\sqrt{u^2−a^2}\right|+C\)

    78. \(\quad \displaystyle ∫u^2\sqrt{u^2−a^2}\,du=\frac{u}{8}(2u^2−a^2)\sqrt{u^2−a^2}−\frac{a^4}{8}\ln \left|u+\sqrt{u^2−a^2}\right|+C\)

    79. \(\quad \displaystyle ∫\frac{\sqrt{u^2−a^2}}{u}\,du=\sqrt{u^2−a^2}−a\arccos\frac{a}{|u|}+C\)

    80. \(\quad \displaystyle ∫\frac{\sqrt{u^2−a^2}}{u^2}\,du=−\frac{\sqrt{u^2−a^2}}{u}+\ln \left|u+\sqrt{u^2−a^2}\right|+C\)

    81. \(\quad \displaystyle ∫\frac{du}{\sqrt{u^2−a^2}}=\ln \left|u+\sqrt{u^2−a^2}\right|+C\)

    82. \(\quad \displaystyle ∫\frac{u^2}{\sqrt{u^2−a^2}}\,du=\frac{u}{2}\sqrt{u^2−a^2}+\frac{a^2}{2}\ln \left|u+\sqrt{u^2−a^2}\right|+C\)

    83. \(\quad \displaystyle ∫\frac{du}{u^2\sqrt{u^2−a^2}}=\frac{\sqrt{u^2−a^2}}{a^2u}+C\)

    84. \(\quad \displaystyle ∫\frac{du}{(u^2−a^2)^{3/2}}=−\frac{u}{a^2\sqrt{u^2−a^2}}+C\)

    Integrals Involving a2u2, a > 0

    85. \(\quad \displaystyle ∫\sqrt{a^2-u^2}\,du=\frac{u}{2}\sqrt{a^2-u^2}+\frac{a^2}{2}\arcsin\frac{u}{a}+C\)

    86. \(\quad \displaystyle ∫u^2\sqrt{a^2-u^2}\,du=\frac{u}{8}(2u^2−a^2)\sqrt{a^2-u^2}+\frac{a^4}{8}\arcsin\frac{u}{a}+C\)

    87. \(\quad \displaystyle ∫\frac{\sqrt{a^2-u^2}}{u}\,du=\sqrt{a^2-u^2}−a\ln \left|\frac{a+\sqrt{a^2-u^2}}{u}\right|+C\)

    88. \(\quad \displaystyle ∫\frac{\sqrt{a^2-u^2}}{u^2}\,du=\frac{−1}{u}\sqrt{a^2-u^2}−\arcsin\frac{u}{a}+C\)

    89. \(\quad \displaystyle ∫\frac{u^2}{\sqrt{a^2-u^2}}\,du=\frac{1}{2}\left(-u\sqrt{a^2-u^2}+a^2\arcsin \frac{u}{a}\right)+C\)

    90. \(\quad \displaystyle ∫\frac{du}{u\sqrt{a^2-u^2}}=−\frac{1}{a}\ln \left|\frac{a+\sqrt{a^2-u^2}}{u}\right|+C\)

    91. \(\quad \displaystyle ∫\frac{du}{u^2\sqrt{a^2-u^2}}=−\frac{1}{a^2u}\sqrt{a^2-u^2}+C\)

    92. \(\quad \displaystyle ∫\left(a^2−u^2\right)^{3/2}\,du=−\frac{u}{8}\left(2u^2−5a^2\right)\sqrt{a^2-u^2}+\frac{3a^4}{8}\arcsin \frac{u}{a}+C\)

    93. \(\quad \displaystyle ∫\frac{du}{(a^2−u^2)^{3/2}}=−\frac{u}{a^2\sqrt{a^2−u^2}}+C\)

    Integrals Involving 2auu2, a > 0

    94. \(\quad \displaystyle ∫\sqrt{2au−u^2}\,du=\frac{u−a}{2}\sqrt{2au−u^2}+\frac{a^2}{2}\arccos\left(\frac{a−u}{a}\right)+C\)

    95. \(\quad \displaystyle ∫\frac{du}{\sqrt{2au−u^2}}=\arccos\left(\frac{a−u}{a}\right)+C\)

    96. \(\quad \displaystyle ∫u\sqrt{2au−u^2}\,du=\frac{2u^2−au−3a^2}{6}\sqrt{2au−u^2}+\frac{a^3}{2}\arccos\left(\frac{a−u}{a}\right)+C\)

    97. \(\quad \displaystyle ∫\frac{du}{u\sqrt{2au−u^2}}=−\frac{\sqrt{2au−u^2}}{au}+C\)

    Integrals Involving a + bu, a ≠ 0

    98. \(\quad \displaystyle ∫\frac{u}{a+bu}\,du=\frac{1}{b^2}(a+bu−a\ln |a+bu|)+C\)

    99. \(\quad \displaystyle ∫\frac{u^2}{a+bu}\,du=\frac{1}{2b^3}\left[(a+bu)^2−4a(a+bu)+2a^2\ln |a+bu|\right]+C\)

    100. \(\quad \displaystyle ∫\frac{du}{u(a+bu)}=\frac{1}{a}\ln \left|\frac{u}{a+bu}\right|+C\)

    101. \(\quad \displaystyle ∫\frac{du}{u^2(a+bu)}=−\frac{1}{au}+\frac{b}{a^2}\ln \left|\frac{a+bu}{u}\right|+C\)

    102. \(\quad \displaystyle ∫\frac{u}{(a+bu)^2}\,du=\frac{a}{b^2(a+bu)}+\frac{1}{b^2}\ln |a+bu|+C\)

    103. \(\quad \displaystyle ∫\frac{u}{u(a+bu)^2}\,du=\frac{1}{a(a+bu)}−\frac{1}{a^2}\ln \left|\frac{a+bu}{u}\right|+C\)

    104. \(\quad \displaystyle ∫\frac{u^2}{(a+bu)^2}\,du=\frac{1}{b^3}\left(a+bu−\frac{a^2}{a+bu}−2a\ln |a+bu|\right)+C\)

    105. \(\quad \displaystyle ∫u\sqrt{a+bu}\,du=\frac{2}{15b^2}(3bu−2a)(a+bu)^{3/2}+C\)

    106. \(\quad \displaystyle ∫\frac{u}{\sqrt{a+bu}}\,du=\frac{2}{3b^2}(bu−2a)\sqrt{a+bu}+C\)

    107. \(\quad \displaystyle ∫\frac{u^2}{\sqrt{a+bu}}\,du=\frac{2}{15b^3}(8a^2+3b^2u^2−4abu)\sqrt{a+bu}+C\)

    108. \(\quad \displaystyle ∫\frac{du}{u\sqrt{a+bu}}=\begin{cases} \frac{1}{\sqrt{a}}\ln \left|\frac{\sqrt{a+bu}−\sqrt{a}}{\sqrt{a+bu}+\sqrt{a}}\right|+C,\quad \text{if}\,a>0\\[5pt] \frac{\sqrt{2}}{\sqrt{−a}}\arctan\sqrt{\frac{a+bu}{−a}}+C,\quad \text{if}\,a<0 \end{cases}\)

    109. \(\quad \displaystyle ∫\frac{\sqrt{a+bu}}{u}\,du=2\sqrt{a+bu}+a∫\frac{du}{u\sqrt{a+bu}}\)

    110. \(\quad \displaystyle ∫\frac{\sqrt{a+bu}}{u^2}\,du=−\frac{\sqrt{a+bu}}{u}+\frac{b}{2}∫\frac{du}{u\sqrt{a+bu}}\)

    111. \(\quad \displaystyle ∫u^n\sqrt{a+bu}\,du=\frac{2}{b(2n+3)}\left[u^n(a+bu)^{3/2}−na∫u^{n−1}\sqrt{a+bu}\,du\right]\)

    112. \(\quad \displaystyle ∫\frac{u^n}{\sqrt{a+bu}}\,du=\frac{2u^n\sqrt{a+bu}}{b(2n+1)}−\frac{2na}{b(2n+1)}∫\frac{u^{n−1}}{\sqrt{a+bu}}\,du\)

    113. \(\quad \displaystyle ∫\frac{du}{u^n\sqrt{a+bu}}=−\frac{\sqrt{a+bu}}{a(n−1)u^{n−1}}−\frac{b(2n−3)}{2a(n−1)}∫\frac{du}{u^{n-1}\sqrt{a+bu}}\)

    Contributors

    • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

    • Introduction paragraphs and inverse trig notation changes by Paul Seeburger (Monroe Community College)

    Table of Integrals is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?