Skip to main content
Mathematics LibreTexts

8.3.1: Solution of Initial Value Problems (Exercises)

  • Page ID
    30767
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q8.3.1

    In Exercises 8.3.1-8.3.31 use the Laplace transform to solve the initial value problem.

    1. \(y''+3y'+2y=e^t, \quad y(0)=1,\quad y'(0)=-6\)

    2. \(y''-y'-6y=2, \quad y(0)=1,\quad y'(0)=0\)

    3. \(y''+y'-2y=2e^{3t}, \quad y(0)=-1,\quad y'(0)=4\)

    4. \(y''-4y=2 e^{3t}, \quad y(0)=1,\quad y'(0)=-1\)

    5. \(y''+y'-2y=e^{3t}, \quad y(0)=1,\quad y'(0)=-1\)

    6. \(y''+3y'+2y=6e^t, \quad y(0)=1,\quad y'(0)=-1\)

    7. \(y''+y=\sin2t, \quad y(0)=0,\quad y'(0)=1\)

    8. \(y''-3y'+2y=2e^{3t}, \quad y(0)=1,\quad y'(0)=-1\)

    9. \(y''-3y'+2y=e^{4t}, \quad y(0)=1,\quad y'(0)=-2\)

    10. \(y''-3y'+2y=e^{3t}, \quad y(0)=-1,\quad y'(0)=-4\)

    11. \(y''+3y'+2y=2e^t, \quad y(0)=0,\quad y'(0)=-1\)

    12. \(y''+y'-2y=-4, \quad y(0)=2,\quad y'(0)=3\)

    13. \(y''+4y=4, \quad y(0)=0,\quad y'(0)=1\)

    14. \(y''-y'-6y=2, \quad y(0)=1,\quad y'(0)=0\)

    15. \(y''+3y'+2y=e^t, \quad y(0)=0,\quad y'(0)=1\)

    16. \(y''-y=1, \quad y(0)=1,\quad y'(0)=0\)

    17. \(y''+4y=3\sin t, \quad y(0)=1,\quad y'(0)=-1\)

    18. \(y''+y'=2e^{3t}, \quad y(0)=-1,\quad y'(0)=4\)

    19. \(y''+y=1, \quad y(0)=2,\quad y'(0)=0\)

    20. \(y''+y=t, \quad y(0)=0,\quad y'(0)=2\)

    21. \(y''+y=t-3\sin2t, \quad y(0)=1,\quad y'(0)=-3\)

    22. \(y''+5y'+6y=2e^{-t}, \quad y(0)=1,\quad y'(0)=3\)

    23. \(y''+2y'+y=6\sin t-4\cos t, \quad y(0)=-1,\; y'(0)=1\)

    24. \(y''-2y'-3y=10\cos t, \quad y(0)=2,\quad y'(0)=7\)

    25. \(y''+y=4\sin t+6\cos t, \quad y(0)=-6,\; y'(0)=2\)

    26. \(y''+4y=8\sin2t+9\cos t, \quad y(0)=1,\quad y'(0)=0\)

    27. \(y''-5y'+6y=10e^t\cos t, \quad y(0)=2,\quad y'(0)=1\)

    28. \(y''+2y'+2y=2t, \quad y(0)=2,\quad y'(0)=-7\)

    29. \(y''-2y'+2y=5\sin t+10\cos t, \quad y(0)=1,\; y'(0)=2\)

    30. \(y''+4y'+13y=10e^{-t}-36e^t, \quad y(0)=0,\; y'(0)=-16\)

    31. \(y''+4y'+5y=e^{-t}(\cos t+3\sin t), \quad y(0)=0,\quad y'(0)=4\)

    Q8.3.2

    32. \(2y''-3y'-2y=4e^t, \quad y(0)=1,\; y'(0)=-2\)

    33. \(6y''-y'-y=3e^{2t}, \quad y(0)=0,\; y'(0)=0\)

    34. \(2y''+2y'+y=2t, \quad y(0)=1,\; y'(0)=-1\)

    35. \(4y''-4y'+5y=4\sin t-4\cos t, \quad y(0)=0,\; y'(0)=11/17\)

    36. \(4y''+4y'+y=3\sin t+\cos t, \quad y(0)=2,\; y'(0)=-1\)

    37. \(9y''+6y'+y=3e^{3t}, \quad y(0)=0,\; y'(0)=-3\)

    38. Suppose \(a,b\), and \(c\) are constants and \(a\ne0\). Let \[y_1={\cal L}^{-1}\left(as+b\over as^2+bs+c\right)\quad \text{and} \quad y_2={\cal L}^{-1}\left(a\over as^2+bs+c\right). \nonumber \]

    Show that \[y_1(0)=1,\quad y_1'(0)=0\quad \text{and} \quad y_2(0)=0,\quad y_2'(0)=1.\nonumber \]

    HINT: Use the Laplace transform to solve the initial value problems

    \[\begin{array}{lll}{ay''+by'+cy=0,}&{y(0)=1,}&{y'(0)=0}\\[4pt]{ay''+by'+cy=0,}&{y(0)=0,}&{y'(0)=1} \end{array}\nonumber \]


    This page titled 8.3.1: Solution of Initial Value Problems (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?