Skip to main content

# 10.2.1: Linear Systems of Differential Equations (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

$$\newcommand{\place}{\bigskip\hrule\bigskip\noindent} \newcommand{\threecol}[3]{\left[\begin{array}{r}#1\\#2\\#3\end{array}\right]} \newcommand{\threecolj}[3]{\left[\begin{array}{r}#1\$1\jot]#2\\[1\jot]#3\end{array}\right]} \newcommand{\lims}[2]{\,\bigg|_{#1}^{#2}} \newcommand{\twocol}[2]{\left[\begin{array}{l}#1\\#2\end{array}\right]} \newcommand{\ctwocol}[2]{\left[\begin{array}{c}#1\\#2\end{array}\right]} \newcommand{\cthreecol}[3]{\left[\begin{array}{c}#1\\#2\\#3\end{array}\right]} \newcommand{\eqline}[1]{\centerline{\hfill\displaystyle#1\hfill}} \newcommand{\twochar}[4]{\left|\begin{array}{cc} #1-\lambda\\#3-\lambda\end{array}\right|} \newcommand{\twobytwo}[4]{\left[\begin{array}{rr} #1\\#3\end{array}\right]} \newcommand{\threechar}[9]{\left[\begin{array}{ccc} #1-\lambda\\#4-\lambda\\#7 -\lambda\end{array}\right]} \newcommand{\threebythree}[9]{\left[\begin{array}{rrr} #1\\#4\\#7 \end{array}\right]} \newcommand{\solutionpart}[1]{\vskip10pt\noindent\underbar{\color{blue}\sc Solution({\bf #1})\ }} \newcommand{\Cex}{\fbox{\textcolor{red}{C}}\, } \newcommand{\CGex}{\fbox{\textcolor{red}{C/G}}\, } \newcommand{\Lex}{\fbox{\textcolor{red}{L}}\, } \newcommand{\matfunc}[3]{\left[\begin{array}{cccc}#1_{11}(t)_{12}(t)&\cdots _{1#3}(t)\\#1_{21}(t)_{22}(t)&\cdots_{2#3}(t)\\\vdots& \vdots&\ddots&\vdots\\#1_{#21}(t)_{#22}(t)&\cdots_{#2#3}(t) \end{array}\right]} \newcommand{\col}[2]{\left[\begin{array}{c}#1_1\\#1_2\\\vdots\\#1_#2\end{array}\right]} \newcommand{\colfunc}[2]{\left[\begin{array}{c}#1_1(t)\\#1_2(t)\\\vdots\\#1_#2(t)\end{array}\right]} \newcommand{\cthreebythree}[9]{\left[\begin{array}{ccc} #1\\#4\\#7 \end{array}\right]} 1 \ newcommand {\ dy} {\ ,\ mathrm {d}y} \ newcommand {\ dx} {\ ,\ mathrm {d}x} \ newcommand {\ dyx} {\ ,\ frac {\ mathrm {d}y}{\ mathrm {d}x}} \ newcommand {\ ds} {\ ,\ mathrm {d}s} \ newcommand {\ dt }{\ ,\ mathrm {d}t} \ newcommand {\dst} {\ ,\ frac {\ mathrm {d}s}{\ mathrm {d}t}}$$ ## Q10.2.1 1. Rewrite the system in matrix form and verify that the given vector function satisfies the system for any choice of the constants $$c_1$$ and $$c_2$$. 1. $$\begin{array}{ccl}y'_1&=&2y_1 + 4y_2\\[4pt] y_2'&=&4y_1+2y_2;\end{array} \quad {\bf y}=c_1\twocol11e^{6t}+c_2\twocol1{-1}e^{-2t}$$ 2. $$\begin{array}{ccl}y'_1&=&-2y_1 - 2y_2\\[4pt] y_2'&=&-5y_1 + \phantom{2}y_2;\end{array} \quad {\bf y}=c_1\twocol11e^{-4t}+c_2\twocol{-2}5e^{3t}$$ 3. $$\begin{array}{ccr}y'_1&=&-4y_1 -10y_2\\[4pt] y_2'&=&3y_1 + \phantom{1}7y_2;\end{array} \quad {\bf y}=c_1\twocol{-5}3e^{2t}+c_2\twocol2{-1}e^t$$ 4. $$\begin{array}{ccl}y'_1&=&2y_1 +\phantom{2}y_2 \\[4pt] y_2'&=&\phantom{2}y_1 + 2y_2;\end{array} \quad {\bf y}=c_1\twocol11e^{3t}+c_2\twocol1{-1}e^t$$ 2. Rewrite the system in matrix form and verify that the given vector function satisfies the system for any choice of the constants $$c_1$$, $$c_2$$, and $$c_3$$. 1. $$\begin{array}{ccr}y'_1&=&- y_1+2y_2 + 3y_3 \\[4pt] y_2'&=&y_2 + 6y_3\\[4pt]y_3'&=&- 2y_3;\end{array}$$ $${\bf y}=c_1\threecol110e^t+c_2\threecol100e^{-t}+c_3\threecol1{-2}1e^{-2t}$$ 2. $$\begin{array}{ccc}y'_1&=&\phantom{2y_1+}2y_2 + 2y_3 \\[4pt] y_2'&=&2y_1\phantom{+2y_2} + 2y_3\\[4pt]y_3'&=&2y_1 + 2y_2;\phantom{+2y_3}\end{array}$$ $${\bf y}=c_1\threecol{-1}01e^{-2t}+c_2\threecol0{-1}1e^{-2t}+c_3\threecol111e^{4t}$$ 3. $$\begin{array}{ccr}y'_1&=&-y_1 +2y_2 + 2y_3\\[4pt] y_2'&=&2y_1 -\phantom{2}y_2 +2y_3\\[4pt]y_3'&=&2y_1 + 2y_2 -\phantom{2}y_3;\end{array}$$ $${\bf y}=c_1\threecol{-1}01e^{-3t}+c_2\threecol0{-1}1e^{-3t}+c_3\threecol111e^{3t}$$ 4. $$\begin{array}{ccr}y'_1&=&3y_1 - \phantom{2}y_2 -\phantom{2}y_3 \\[4pt] y_2'&=&-2y_1 + 3y_2 + 2y_3\\[4pt]y_3'&=&\phantom{-}4y_1 -\phantom{3}y_2 - 2y_3;\end{array}$$ $${\bf y}=c_1\threecol101e^{2t}+c_2\threecol1{-1}1e^{3t}+c_3\threecol1{-3}7e^{-t}$$ 3. Rewrite the initial value problem in matrix form and verify that the given vector function is a solution. 1. $$\begin{array}{ccl}y'_1 &=&\phantom{-2}y_1+\phantom{4}y_2\\[4pt] y_2'&=&-2y_1 + 4y_2,\end{array} \begin{array}{ccr}y_1(0)&=&1\\[4pt]y_2(0)&=&0;\end{array}$$ $${\bf y}=2\twocol11e^{2t}-\twocol12e^{3t}$$ 2. $$\begin{array}{ccl}y'_1 &=&5y_1 + 3y_2 \\[4pt] y_2'&=&- y_1 + y_2,\end{array} \begin{array}{ccr}y_1(0)&=&12\\[4pt]y_2(0)&=&-6;\end{array}$$ $${\bf y}=3\twocol1{-1}e^{2t}+3\twocol3{-1}e^{4t}$$ 4. Rewrite the initial value problem in matrix form and verify that the given vector function is a solution. 1. $$\begin{array}{ccr}y'_1&=&6y_1 + 4y_2 + 4y_3 \\[4pt] y_2'&=&-7y_1 -2y_2 - y_3,\\[4pt]y_3'&=&7y_1 + 4y_2 + 3y_3\end{array},\; \begin{array}{ccr}y_1(0)&=&3\\[4pt] y_2(0)&=&-6\\[4pt] y_3(0)&=&4\end{array}$$ $${\bf y}=\threecol1{-1}1e^{6t}+2\threecol1{-2}1e^{2t}+\threecol0{-1}1e^{-t}$$ 2. $$\begin{array}{ccr}y'_1&=& \phantom{-}8y_1 + 7y_2 +\phantom{1}7y_3 \\[4pt] y_2'&=&-5y_1 -6y_2 -\phantom{1}9y_3,\\[4pt]y_3'&=& \phantom{-}5y_1 + 7y_2 +10y_3,\end{array}\ \begin{array}{ccr}y_1(0)&=&2\\[4pt] y_2(0)&=&-4\\[4pt] y_3(0)&=&3\end{array}$$ $${\bf y}=\threecol1{-1}1e^{8t}+\threecol0{-1}1e^{3t}+\threecol1{-2}1e^t$$ 5. Rewrite the system in matrix form and verify that the given vector function satisfies the system for any choice of the constants $$c_1$$ and $$c_2$$. 1. $$\begin{array}{ccc}y'_1&=&-3y_1+2y_2+3-2t \\[4pt] y_2'&=&-5y_1+3y_2+6-3t\end{array}$$ $${\bf y}=c_1\left[\begin{array}{c}2\cos t\\[4pt]3\cos t-\sin t\end{array}\right]+c_2\left[\begin{array}{c}2\sin t\\[4pt]3\sin t+\cos t \end{array}\right]+\twocol1t$$ 2. $$\begin{array}{ccc}y'_1&=&3y_1+y_2-5e^t \\[4pt] y_2'&=&-y_1+y_2+e^t\end{array}$$ $${\bf y}=c_1\twocol{-1}1e^{2t}+c_2\left[\begin{array}{c}1+t\\[4pt]-t\end{array} \right]e^{2t}+\twocol13e^t$$ 3. $$\begin{array}{ccl}y'_1&=&-y_1-4y_2+4e^t+8te^t \\[4pt] y_2'&=&-y_1-\phantom{4}y_2+e^{3t}+(4t+2)e^t\end{array}$$ $${\bf y}=c_1\twocol21e^{-3t}+c_2\twocol{-2}1e^t+\left[\begin{array}{c} e^{3t}\\[4pt]2te^t\end{array}\right]$$ 4. $$\begin{array}{ccc}y'_1&=&-6y_1-3y_2+14e^{2t}+12e^t \\[4pt] y_2'&=&\phantom{6}y_1-2y_2+7e^{2t}-12e^t\end{array}$$ $${\bf y}=c_1\twocol{-3}1e^{-5t}+c_2\twocol{-1}1e^{-3t}+ \left[\begin{array}{c}e^{2t}+3e^t\\[4pt]2e^{2t}-3e^t\end{array}\right]$$ 6. Convert the linear scalar equation \[P_0(t)y^{(n)}+P_1(t)y^{(n-1)}+\cdots+P_n(t)y(t)=F(t) \tag{A}$

into an equivalent $$n\times n$$ system

${\bf y'}=A(t){\bf y}+{\bf f}(t),\nonumber$

and show that $$A$$ and $${\bf f}$$ are continuous on an interval $$(a,b)$$ if and only if (A) is normal on $$(a,b)$$.

7. A matrix function

$Q(t)=\left[\begin{array}{cccc}{q_{11}(t)}&{q_{12}(t)}&{\cdots }&{q_{1s}(t)} \\[4pt] {q_{21}(t)}&{q_{22}(t)}&{\cdots }&{q_{2s}(t)} \\[4pt] {\vdots }&{\vdots }&{\ddots }&{\vdots } \\[4pt] {q_{r1}(t)}&{q_{r2}(t)}&{\cdots }&{q_{rs}(t)} \end{array} \right] \nonumber$

is said to be differentiable if its entries $$\{q_{ij}\}$$ are differentiable. Then the derivative $$Q'$$ is defined by

$Q(t)=\left[\begin{array}{cccc}{q'_{11}(t)}&{q'_{12}(t)}&{\cdots }&{q'_{1s}(t)} \\[4pt] {q'_{21}(t)}&{q'_{22}(t)}&{\cdots }&{q'_{2s}(t)} \\[4pt] {\vdots }&{\vdots }&{\ddots }&{\vdots } \\[4pt] {q'_{r1}(t)}&{q'_{r2}(t)}&{\cdots }&{q'_{rs}(t)} \end{array} \right] \nonumber$

1. Prove: If $$P$$ and $$Q$$ are differentiable matrices such that $$P+Q$$ is defined and if $$c_1$$ and $$c_2$$ are constants, then $(c_1P+c_2Q)'=c_1P'+c_2Q'.\nonumber$
2. Prove: If $$P$$ and $$Q$$ are differentiable matrices such that $$PQ$$ is defined, then $(PQ)'=P'Q+PQ'.\nonumber$

8. Verify that $$Y' = AY$$.

1. $$Y=\left[\begin{array}{cc}{e^{6t}}&{e^{-2t}}\$4pt]{e^{6t}}&{-e^{-2t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{2}&{4}\\[4pt]{4}&{2} \end{array} \right]$$ 2. $$Y=\left[\begin{array}{cc}{e^{-4t}}&{-2e^{3t}}\\[4pt]{e^{-4t}}&{5e^{3t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{-2}&{-2}\\[4pt]{-5}&{1} \end{array} \right]$$ 3. $$Y=\left[\begin{array}{cc}{-5e^{2t}}&{2e^{t}}\\[4pt]{3e^{2t}}&{-e^{t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{-4}&{-10}\\[4pt]{3}&{7} \end{array} \right]$$ 4. $$Y=\left[\begin{array}{cc}{e^{3t}}&{e^{t}}\\[4pt]{e^{3t}}&{-e^{t}} \end{array} \right],\quad A=\left[\begin{array}{cc}{2}&{1}\\[4pt]{1}&{2} \end{array} \right]$$ 5. $$Y = \left[\begin{array}{ccc} e^t&e^{-t}& e^{-2t}\\[4pt] e^t&0&-2e^{-2t}\\[4pt] 0&0&e^{-2t}\end{array}\right], \quad A = \left[\begin{array}{ccc}{-1}&{2}&{3}\\[4pt]{0}&{1}&{6}\\[4pt]{0}&{0}&{-2} \end{array} \right]$$ 6. $$Y = \left[\begin{array}{ccc} {-e^{-2t}}&{-e^{-2t}}& {e^{4t}}\\[4pt] {0}&{e^{-2t}}&{e^{4t}}\\[4pt] {e^{-2t}}&{0}&{e^{4t}}\end{array}\right], \quad A = \left[\begin{array}{ccc}{0}&{2}&{2}\\[4pt]{2}&{0}&{2}\\[4pt]{2}&{2}&{0} \end{array} \right]$$ 7. $$Y = \left[\begin{array}{ccc} {e^{3t}}&{e^{-3t}}& {0}\\[4pt] {e^{3t}}&{0}&{-e^{-3t}}\\[4pt] {e^{3t}}&{e^{-3t}}&{e^{-3t}}\end{array}\right], \quad A = \left[\begin{array}{ccc}{-9}&{6}&{6}\\[4pt]{-6}&{3}&{6}\\[4pt]{-6}&{6}&{3} \end{array} \right]$$ 8. $$Y = \left[\begin{array}{ccc} {e^{2t}}&{e^{3t}}& {e^{-t}}\\[4pt] {0}&{-e^{3t}}&{-3e^{-t}}\\[4pt] {e^{2t}}&{e^{3t}}&{7e^{-t}}\end{array}\right], \quad A = \left[\begin{array}{ccc}{3}&{-1}&{-1}\\[4pt]{-2}&{3}&{2}\\[4pt]{4}&{-1}&{-2} \end{array} \right]$$ 9. Suppose \[{\bf y}_1=\twocol{y_{11}}{y_{21}}\quad \text{and} \quad{\bf y}_2=\twocol{y_{12}}{y_{22}}\nonumber$

are solutions of the homogeneous system

${\bf y}'=A(t){\bf y}, \tag{A}$

and define

$Y= \left[\begin{array}{cc}{y_{11}}&{y_{12}}\\[4pt]{y_{21}}&{y_{22}}\end{array}\right].\nonumber$

1. Show that $$Y'=AY$$.
2. Show that if $${\bf c}$$ is a constant vector then $${\bf y}= Y{\bf c}$$ is a solution of (A).
3. State generalizations of (a) and (b) for $$n\times n$$ systems.

10. Suppose $$Y$$ is a differentiable square matrix.

1. Find a formula for the derivative of $$Y^2$$.
2. Find a formula for the derivative of $$Y^n$$, where $$n$$ is any positive integer.
3. State how the results obtained in (a) and (b) are analogous to results from calculus concerning scalar functions.

11. It can be shown that if $$Y$$ is a differentiable and invertible square matrix function, then $$Y^{-1}$$ is differentiable.

1. Show that ($$Y^{-1})'= -Y^{-1}Y'Y^{-1}$$. (Hint: Differentiate the identity $$Y^{-1}Y=I$$.)
2. Find the derivative of $$Y^{-n}=\left(Y^{-1}\right)^n$$, where $$n$$ is a positive integer.
3. State how the results obtained in (a) and (b) are analogous to results from calculus concerning scalar functions.

12. Show that Theorem 10.2.1 implies Theorem 9.1.1. HINT: Write the scalar function $P_{0}(x)y^{(n)}+P_{1}(x)y^{(n-1)}+\cdots +P_{n}(x)y=F(x)\nonumber$ as an $$n\times n$$ system of linear equations.

13. Suppose $${\bf y}$$ is a solution of the $$n\times n$$ system $${\bf y}'=A(t){\bf y}$$ on $$(a,b)$$, and that the $$n\times n$$ matrix $$P$$ is invertible and differentiable on $$(a,b)$$. Find a matrix $$B$$ such that the function $${\bf x}=P{\bf y}$$ is a solution of $${\bf x}'=B{\bf x}$$ on $$(a,b)$$.

This page titled 10.2.1: Linear Systems of Differential Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

• Was this article helpful?