Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

11.20: A.2.3- Section 2.3 Answers

( \newcommand{\kernel}{\mathrm{null}\,}\)

1. (b) x0kπ(k=integer)

2. (b) (x0,y0)(0,0)

3. (b) x0y0(2k+1)π2(k=integer)

4. (b) x0y0>0 and x0y01

5.

  1. all (x0,y0)
  2. (x0,y0) woth y00

6. (b) all (x0,y0)

7. (b) all (x0,y0)

8. (b) (x0,y0) such that x04y0

9.

  1. all (x0,y0)
  2. all (x0,y0)(0,0)

10.

  1. all (x0,y0)
  2. all (x0,y0) with y0±1

11. (b) all (x0,y0)

12. (b) all (x0,y0) such that (x0,y0)>0

13. (b) all (x0,y0) with x01,y0(2k+1)π2(k=integer)

16. y=(35x+1)5/3,<x<, is a solution.

Also, y={0,<x53(35x+1)5/3,53<x<

is a solution. For every a53, the following function is also a solution: y={(35(x+a))5/3,<x<a,0,ax53(35x+1)5/3,53<x<

17.

  1. all (x0,y0)
  2. all (x0,y0) with y01

18. y1=1;y2=1+|x|3;y3=1|x|3;y4=1+x3;y5=1x3

y6={1+x3,x0,1,x<0;y7={1x3,x0,1,x<0;

y8={1,x0,1+x3,x<0;y9={1,x0,1x3,x<0

19. y=1+(x2+4)3/2,<x<

20.

  1. The solution is unique on (0,). It is given by
    y={1,0<x51(x25)3/2,5<x<
  2. y={1,<x5,1(x25)3/2,5<x<
    is a solution of (A) on (,). If α0, then y={1+(x2α2)3/2,<x<α,1,αx5,1(x25)3/2,5<x<,
    and y={1(x2α2)3/2,<x<α,1,αx5,1(x25)3/2,5<x<,
    are also solutions of (A) on (,).

This page titled 11.20: A.2.3- Section 2.3 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

Support Center

How can we help?