# 11.21: A.2.4- Section 2.4 Answers

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

1. $$y=\frac{1}{1-ce^{x}}$$

2. $$y=x^{2/7}(c-\ln |x|)^{1/7}$$

3. $$y=e^{2/x}(c-1/x)^{2}$$

4. $$y=\pm\frac{\sqrt{2x+c}}{1+x^{2}}$$

5. $$y=\pm (1-x^{2}+ce^{-x^{2}})^{-1/2}$$

6. $$y=\left[\frac{x}{3(1-x)+ce^{-x}} \right] ^{1/3}$$

7. $$y=\frac{2\sqrt{2}}{\sqrt{1-4x}}$$

8. $$y=\left[1-\frac{3}{2}e^{-(x^{2}-1)/4} \right]^{-2}$$

9. $$y=\frac{1}{x(11-3x)^{1/3}}$$

10. $$y=(2e^{x}-1)^{2}$$

11. $$y=(2e^{12x}-1-12x)^{1/3}$$

12. $$y=\left[\frac{5x}{2(1+4x^{5})} \right]^{1/2}$$

13. $$y=(4e^{x/2}-x-2)^{2}$$

14. $$P=\frac{P_{0}e^{at}}{1+aP_{0}\int_{0}^{t}\alpha (\tau )e^{a\tau }d\tau };\quad\lim_{t\to\infty }P(t)=\left\{\begin{array}{cc}{\infty }&{\text{if }L=0,}\$4pt]{0}&{\text{if }L=\infty ,}\\[4pt]{1/aL}&{\text{if }0<L<\infty }\end{array} \right.$$ 15. $$y=x(\ln |x|+c)$$ 16. $$y=\frac{cx^{2}}{1-cx}\quad y=-x$$ 17. $$y=\pm x(4\ln |x|+c)^{1/4}$$ 18. $$y=x\sin ^{-1}(\ln |x|+c)$$ 19. $$y=x\tan (\ln |x|+c)$$ 20. $$y=\pm x\sqrt{cx^{2}-1}$$ 21. $$y=\pm x\ln (\ln |x|+c)$$ 22. $$y=-\frac{2x}{2\ln |x|+1}$$ 23. $$y=x(3\ln x+27)^{1/3}$$ 24. $$y=\frac{1}{x}\left(\frac{9-x^{4}}{2} \right)^{1/2}$$ 25. $$y=-x$$ 26. $$y=-\frac{x(4x-3)}{(2x-3)}$$ 27. $$y=x\sqrt{4x^{6}-1}$$ 28. $$\tan ^{-1}\frac{y}{x}-\frac{1}{2}\ln (x^{2}+y^{2})=c$$ 29. $$(x+y)\ln |x|+y(1-\ln |y|)+cx=0$$ 30. $$(y+x)^{3}=3x^{3}(\ln |x|+c)$$ 31. $$(y+x)=c(y-x)^{3};\quad y=x;\quad y=-x$$ 32. $$y^{2}(y-3x)=c;\quad y≡0;\quad y=3x$$ 33. $$(x-y)^{3}(x+y)=cy^{2}x^{4};\quad y=0;\quad y=x;\quad y=-x$$ 34. $$\frac{y}{x}+\frac{y^{3}}{x^{3}}=\ln |x|+c$$ 40. Choose $$X_{0}$$ and $$Y_{0}$$ so that \[aX_{0}+bY_{0}=\alpha\nonumber$ $cX_{0}+dY_{0}=\beta\nonumber$

41. $$(y+2x+1)^{4})2y-6x-3)=c;\quad y=3x+3/2;\quad y=-2x-1$$

42. $$(y+x-1)(y-x-5)^{3}=c;\quad y=x+5;\quad y=-x+1$$

43. $$\ln |y-x-6|-\frac{2(x+2)}{y-x-6}=c;\quad y=x+6$$

44. $$(y_{1}=x^{1/3}y=x^{1/3}(\ln |x|+c)^{1/3}$$

45. $$y_{1}=x^{3};\quad y=\pm x^{3}\sqrt{cx^{6}-1}$$

46. $$y_{1}=x^{2};\quad y=\frac{x^{2}(1+cx^{4})}{1-cx^{4}} y=-x^{2}$$

47. $$y_{1}=e^{x};\quad y=-\frac{e^{x}(1-2ce^{x}}{1-ce^{x}};\quad y=-2e^{x}$$

48. $$y_{1}=\tan x; y=\tan x\tan (\ln |\tan x|+c)$$

49. $$y_{1}=\ln x;\quad y=\frac{2\ln x(1+c(\ln x)^{4})}{1-c(\ln x)^{4}};\quad y=-2\ln x$$

50. $$y_{1}=x^{1/2};\quad y=x^{1/2}(-2\pm\sqrt{\ln |x|+c})$$

51. $$y_{1}=e^{x^{2}};\quad y=e^{x^{2}}(-1\pm\sqrt{2x^{2}+c})$$

52. $$y=\frac{-3+\sqrt{1+60x}}{2x}$$

53. $$y=\frac{-5+\sqrt{1+48x}}{2x^{2}}$$

56. $$y=1+\frac{1}{x+1+ce^{x}}$$

57. $$y=e^{x}-\frac{1}{1+ce^{-x}}$$

58. $$y=1-\frac{1}{x(1-cx)}$$

59. $$y=x-\frac{2x}{x^{2}+c}$$

This page titled 11.21: A.2.4- Section 2.4 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.