Skip to main content
Mathematics LibreTexts

11.21: A.2.4- Section 2.4 Answers

  • Page ID
    121419
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(y=\frac{1}{1-ce^{x}}\)

    2. \(y=x^{2/7}(c-\ln |x|)^{1/7}\)

    3. \(y=e^{2/x}(c-1/x)^{2}\)

    4. \(y=\pm\frac{\sqrt{2x+c}}{1+x^{2}}\)

    5. \(y=\pm (1-x^{2}+ce^{-x^{2}})^{-1/2}\)

    6. \(y=\left[\frac{x}{3(1-x)+ce^{-x}} \right] ^{1/3}\)

    7. \(y=\frac{2\sqrt{2}}{\sqrt{1-4x}}\)

    8. \(y=\left[1-\frac{3}{2}e^{-(x^{2}-1)/4} \right]^{-2}\)

    9. \(y=\frac{1}{x(11-3x)^{1/3}}\)

    10. \(y=(2e^{x}-1)^{2}\)

    11. \(y=(2e^{12x}-1-12x)^{1/3}\)

    12. \(y=\left[\frac{5x}{2(1+4x^{5})} \right]^{1/2}\)

    13. \(y=(4e^{x/2}-x-2)^{2}\)

    14. \(P=\frac{P_{0}e^{at}}{1+aP_{0}\int_{0}^{t}\alpha (\tau )e^{a\tau }d\tau };\quad\lim_{t\to\infty }P(t)=\left\{\begin{array}{cc}{\infty }&{\text{if }L=0,}\\[4pt]{0}&{\text{if }L=\infty ,}\\[4pt]{1/aL}&{\text{if }0<L<\infty }\end{array} \right.\)

    15. \(y=x(\ln |x|+c)\)

    16. \(y=\frac{cx^{2}}{1-cx}\quad y=-x\)

    17. \(y=\pm x(4\ln |x|+c)^{1/4}\)

    18. \(y=x\sin ^{-1}(\ln |x|+c)\)

    19. \(y=x\tan (\ln |x|+c)\)

    20. \(y=\pm x\sqrt{cx^{2}-1}\)

    21. \(y=\pm x\ln (\ln |x|+c)\)

    22. \(y=-\frac{2x}{2\ln |x|+1}\)

    23. \(y=x(3\ln x+27)^{1/3}\)

    24. \(y=\frac{1}{x}\left(\frac{9-x^{4}}{2} \right)^{1/2}\)

    25. \(y=-x\)

    26. \(y=-\frac{x(4x-3)}{(2x-3)}\)

    27. \(y=x\sqrt{4x^{6}-1}\)

    28. \(\tan ^{-1}\frac{y}{x}-\frac{1}{2}\ln (x^{2}+y^{2})=c\)

    29. \((x+y)\ln |x|+y(1-\ln |y|)+cx=0\)

    30. \((y+x)^{3}=3x^{3}(\ln |x|+c)\)

    31. \((y+x)=c(y-x)^{3};\quad y=x;\quad y=-x\)

    32. \(y^{2}(y-3x)=c;\quad y≡0;\quad y=3x\)

    33. \((x-y)^{3}(x+y)=cy^{2}x^{4};\quad y=0;\quad y=x;\quad y=-x\)

    34. \(\frac{y}{x}+\frac{y^{3}}{x^{3}}=\ln |x|+c\)

    40. Choose \(X_{0}\) and \(Y_{0}\) so that

    \[aX_{0}+bY_{0}=\alpha\nonumber \] \[cX_{0}+dY_{0}=\beta\nonumber \]

    41. \((y+2x+1)^{4})2y-6x-3)=c;\quad y=3x+3/2;\quad y=-2x-1\)

    42. \((y+x-1)(y-x-5)^{3}=c;\quad y=x+5;\quad y=-x+1\)

    43. \(\ln |y-x-6|-\frac{2(x+2)}{y-x-6}=c;\quad y=x+6\)

    44. \((y_{1}=x^{1/3}y=x^{1/3}(\ln |x|+c)^{1/3}\)

    45. \(y_{1}=x^{3};\quad y=\pm x^{3}\sqrt{cx^{6}-1}\)

    46. \(y_{1}=x^{2};\quad y=\frac{x^{2}(1+cx^{4})}{1-cx^{4}} y=-x^{2}\)

    47. \(y_{1}=e^{x};\quad y=-\frac{e^{x}(1-2ce^{x}}{1-ce^{x}};\quad y=-2e^{x}\)

    48. \(y_{1}=\tan x; y=\tan x\tan (\ln |\tan x|+c)\)

    49. \(y_{1}=\ln x;\quad y=\frac{2\ln x(1+c(\ln x)^{4})}{1-c(\ln x)^{4}};\quad y=-2\ln x\)

    50. \(y_{1}=x^{1/2};\quad y=x^{1/2}(-2\pm\sqrt{\ln |x|+c})\)

    51. \(y_{1}=e^{x^{2}};\quad y=e^{x^{2}}(-1\pm\sqrt{2x^{2}+c})\)

    52. \(y=\frac{-3+\sqrt{1+60x}}{2x}\)

    53. \(y=\frac{-5+\sqrt{1+48x}}{2x^{2}}\)

    56. \(y=1+\frac{1}{x+1+ce^{x}}\)

    57. \(y=e^{x}-\frac{1}{1+ce^{-x}}\)

    58. \(y=1-\frac{1}{x(1-cx)}\)

    59. \(y=x-\frac{2x}{x^{2}+c}\)


    This page titled 11.21: A.2.4- Section 2.4 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?