Skip to main content
Mathematics LibreTexts

11.22: A.2.5- Section 2.5 Answers

  • Page ID
    121420
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(2x^{3}y^{2}=c\)

    2. \(3y\sin x+2x^{2}e^{x}+3y=c\)

    3. Not exact

    4. \(x^{2}-2xy^{2}+4y^{3}=c\)

    5. \(x+y=c\)

    6. Not exact

    7. \(2y^{2}\cos x+3xy^{3}-x^{2}=c\)

    8. Not exact

    9. \(x^{3}+x^{2}y+4xy^{2}+9y^{2}=c\)

    10. Not exact

    11. \(\ln |xy|+x^{2}+y^{2}=c\)

    12. Not exact

    13. \(x^{2}+y^{2}=c\)

    14. \(x^{2}y^{2}e^{x}+2y+3x^{2}=c\)

    15. \(x^{3}e^{x^{2}+y}-4y^{3}+2x^{2}=c\)

    16. \(x^{4}e^{xy}+3xy=c\)

    17. \(x^{3}\cos xy+4y^{2}+2x^{2}=c\)

    18. \(y=\frac{x+\sqrt{2x^{2}+3x-1}}{x^{2}}\)

    19. \(y=\sin x-\sqrt{1-\frac{\tan x}{2}}\)

    20. \(y=\left(\frac{e^{x}-1}{e^{x}+1} \right)^{1/3}\)

    21. \(y=1+2\tan x\)

    22. \(y=\frac{x^{2}-x+6}{(x+2)(x-3)}\)

    23. \(\frac{7x^{2}}{2}+4xy+\frac{3y^{2}}{2}=c\)

    24. \((x^{4}y^{2}+1)e^{x}+y^{2}=c\)

    29.

    1. \(M(x,y)=2xy+f(x)\)
    2. \(M(x,y)=2(\sin x+x\cos x)(y\sin y +\cos y)+f(x)\)
    3. \(M(x,y) = ye^{x}-e^{y}\cos x+f(x)\)

    30.

    1. \(N(x,y)=\frac{x^{4}y}{2}+x^{2}+6xy+g(y)\)
    2. \(N(x,y)=\frac{x}{y}+2y\sin x+g(y)\)
    3. \(N(x,y)=x(\sin y+y\cos y)+g(y)\)

    33. \(B=C\)

    34. \(B=2D,\quad E=2C\)

    37.

    1. \(2x^{2}+x^{4}y^{4}+y^{2}=c\)
    2. \(x^{3}+3xy^{2}=c\)
    3. \(x^{3}+y^{2}+2xy=c\)

    38. \(y=-1-\frac{1}{x^{2}}\)

    39. \(y=x^{3}\left(\frac{-3(x^{2}+1)+\sqrt{9x^{4}+34x^{2}+21}}{2} \right)\)

    40. \(y=-e^{-x^{2}}\left(\frac{2x+\sqrt{9-5x^{2}}}{3} \right)\)

    44.

    1. \(G(x,y)=2xy+c\)
    2. \(G(x,y)=e^{x}\sin y+c\)
    3. \(G(x,y)=3x^{2}y-y^{3}+c\)
    4. \(G(x,y)=-\sin x\sinh y+c\)
    5. \(G(x,y)=\cos x\sinh y+c\)

    This page titled 11.22: A.2.5- Section 2.5 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?