Skip to main content
Mathematics LibreTexts

11.24: A.3.1- Section 3.1 Answers

  • Page ID
    121422
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(y_{1}= 1.450000000,\: y_{2} = 2.085625000,\: y_{3} = 3.079099746\)

    2. \(y_{1} = 1.200000000,\: y_{2} = 1.440415946,\: y_{3} = 1.729880994\)

    3. \(y_{1} = 1.900000000,\: y_{2} = 1.781375000,\: y_{3} = 1.646612970\)

    4. \(y_{1} = 2.962500000,\: y_{2} = 2.922635828,\: y_{3} = 2.880205639\)

    5. \(y_{1} = 2.513274123,\: y_{2} = 1.814517822,\: y_{3} = 1.216364496\)

    6.

    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) Exact
    \(1.0\) \(48.298147362\) \(51.492825643\) \(53.076673685\) \(54.647937102\)

    7.

    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) Exact
    \(2.0\) \(1.390242009\) \(1.370996758\) \(1.361921132\) \(1.353193719\)

    8.

    \(x\) \(h=0.05\) \(h=0.025\) \(h=0.0125\) Exact
    \(1.50\) \(7.886170437\) \(8.852463793\) \(9.548039907\) \(10.500000000\)

    9.

    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) \(h=0.1\) \(h=0.05\) \(h=0.025\)
    \(3.0\) \(1.469458241\) \(1.462514486\) \(1.459217010\) \(0.3210\) \(0.1537\) \(0.0753\)
      Approximate Solutions Residuals

    10.

    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) \(h=0.1\) \(h=0.05\) \(h=0.025\)
    \(2.0\) \(0.473456737\) \(0.483227470\) \(0.487986391\) \(-0.3129\) \(-0.1563\) \(-0.0781\)
      Approximate Solutions Residuals

    11.

    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(1.0\) \(0.691066797\) \(0.676269516\) \(0.668327471\) \(0.659957689\)

    12.

    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(2.0\) \(-0.772381768\) \(-0.761510960\) \(-0.756179726\) \(-0.750912371\)

    13.

    Euler's Method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) Exact
    \(1.0\) \(0.538871178\) \(0.593002325\) \(0.620131525\) \(0.647231889\)
    Euler semilinear Method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) Exact
    \(1.0\) \(0.647231889\) \(0.647231889\) \(0.647231889\) \(0.647231889\)

    Applying variation of parameters to the given initial value problem yields \(y = ue^{−3x}\), where (A) \(u' = 7, u(0) = 6\). Since \(u''= 0\), Euler’s method yields the exact solution of (A). Therefore the Euler semilinear method produces the exact solution of the given problem

    14.

    Euler's Method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(3.0\) \(12.804226135\) \(13.912944662\) \(14.559623055\) \(15.282004826\)
    Euler semilinear method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(3.0\) \(15.354122287\) \(15.317257705\) \(15.299429421\) \(15.282004826\)

    15.

    Euler's method
    \(x\) \(h=0.2\) \(h=0.1\) \(h=0.05\) "Exact"
    \(2.0\) \(0.867565004\) \(0.885719263\) \(0.895024772\) \(0.904276722\)
    Euler's semilinear method
    \(x\) \(h=0.2\) \(h=0.1\) \(h=0.05\) "Exact"
    \(2.0\) \(0.569670789\) \(0.720861858\) \(0.808438261\) \(0.904276722\)

    16.

    Euler's method
    \(x\) \(h=0.2\) \(h=0.1\) \(h=0.05\) "Exact"
    \(3.0\) \(0.922094379\) \(0.945604800\) \(0.956752868\) \(0.967523153\)
    Euler semilinear method
    \(x\) \(h=0.2\) \(h=0.1\) \(h=0.05\) "Exact"
    \(3.0\) \(0.993954754\) \(0.980751307\) \(0.974140320\) \(0.967523153\)

    17.

    Euler's method
    \(x\) \(h=0.0500\) \(h=0.0250\) \(h=0.0125\) "Exact"
    \(1.50\) \(0.319892131\) \(0.330797109\) \(0.337020123\) \(0.343780513\)
    Euler semilinear method
    \(x\) \(h=0.0500\) \(h=0.0250\) \(h=0.0125\) "Exact"
    \(1.50\) \(0.305596953\) \(0.323340268\) \(0.333204519\) \(0.343780513\)

    18.

    Euler's method
    \(x\) \(h=0.2\) \(h=0.1\) \(h=0.05\) "Exact"
    \(2.0\) \(0.754572560\) \(0.743869878\) \(0.738303914\) \(0.732638628\)
    Euler semilinear method
    \(x\) \(h=0.2\) \(h=0.1\) \(h=0.05\) "Exact"
    \(2.0\) \(0.722610454\) \(0.727742966\) \(0.730220211\) \(0.732638628\)

    19.

    Euler's method
    \(x\) \(h=0.0500\) \(h=0.0250\) \(h=0.0125\) "Exact"
    \(1.50\) \(2.175959970\) \(2.210259554\) \(2.227207500\) \(2.244023982\)
    Euler semilinear method
    \(x\) \(h=0.0500\) \(h=0.0250\) \(h=0.0125\) "Exact"
    \(1.50\) \(2.117953342\) \(2.179844585\) \(2.211647904\) \(2.244023982\)

    20.

    Euler's method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(1.0\) \(0.032105117\) \(0.043997045\) \(0.050159310\) \(0.056415515\)
    Euler's semilinear method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(1.0\) \(0.056020154\) \(0.056243980\) \(0.056336491\) \(0.056415515\)

    21.

    Euler's method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(1.0\) \(28.987816656\) \(38.426957516\) \(45.367269688\) \(54.729594761\)
    Euler's semilinar method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(1.0\) \(54.709134946\) \(54.724150485\) \(54.728228015\) \(54.729594761\)

    22.

    Euler's method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(3.0\) \(1.361427907\) \(1.361320824\) \(1.361332589\) \(1.361383810\)
    Euler's semilinar method
    \(x\) \(h=0.1\) \(h=0.05\) \(h=0.025\) "Exact"
    \(3.0\) \(1.291345518\) \(1.326535737\) \(1.344004102\) \(1.361383810\)

    This page titled 11.24: A.3.1- Section 3.1 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?