Skip to main content
Mathematics LibreTexts

11.33: A.5.2- Section 5.2 Answers

  • Page ID
    121431
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(y=c_{1}e^{-6x}+c_{2}e^{x}\)

    2. \(y=e^{2x}(c_{1}\cos x+c_{2}\sin x)\)

    3. \(y=c_{1}e^{-7x}+c_{2}e^{-x}\)

    4. \(y=e^{2x}(c_{1}+c_{2}x)\)

    5. \(y=e^{-x}(c_{1}\cos 3x+c_{2}\sin 3x)\)

    6. \(y=e^{-3x}(c_{1}\cos x+c_{2}\sin x)\)

    7. \(y=e^{4x}(c_{1}+c_{2}x)\)

    8. \(y=c_{1}+c_{2}e^{-x}\)

    9. \(y=e^{x}(c_{1}\cos\sqrt{2}x+c_{2}\sin\sqrt{2}x)\)

    10. \(y=e^{-3x}(c_{1}\cos 2x+c_{2}\sin 2x)\)

    11. \(y=e^{-x/2}\left(c_{1}\cos\frac{3x}{2}+c_{2}\sin\frac{3x}{2} \right)\)

    12. \(y=c_{1}e^{-x/5}+c_{2}e^{x/2}\)

    13. \(y = e ^{-7x} (2 \cos x − 3 \sin x)\)

    14. \(y=4e^{x/2}+6e^{-x/3}\)

    15. \(y=3e^{x/3}-4e^{-x/2}\)

    16. \(y=\frac{e^{-x/2}}{3}+\frac{3e^{3x/2}}{4}\)

    17. \(y=e^{3x/2}(3-2x)\)

    18. \(y=3^{-4x}-4e^{-3x}\)

    19. \(y=2xe^{3x}\)

    20. \(y=e^{x/6}(3+2x)\)

    21. \(y=e^{-2x}\left(3\cos\sqrt{6}x+\frac{2\sqrt{6}}{3}\sin\sqrt{6}x \right)\)

    23. \(y=2e^{-(x-1)}-3e^{-2(x-1)}\)

    24. \(y=\frac{1}{3}e^{-(x-2)}-\frac{2}{3}e^{7(x-2)}\)

    25. \(y=e^{7(x-1)}(2-3(x-1))\)

    26. \(y=e^{-(x-2)/3}(2-4(x-2))\)

    27. \(y=2\cos\frac{2}{3}\left(x-\frac{\pi }{4} \right) -3\sin\frac{2}{3}\left(x-\frac{\pi }{4} \right)\)

    28. \(y=2\cos\sqrt{3}\left( x-\frac{\pi }{3}\right)-\frac{1}{\sqrt{3}}\sin\sqrt{3}\left(x-\frac{\pi }{3} \right)\)

    30. \(y=\frac{k_{0}}{r_{2}-r_{1}}\left(r_{2}e^{r_{1}(x-x_{0})}-r_{1}e^{r_{2}(x-x_{0})} \right) +\frac{k_{1}}{r_{2}-r_{1}}\left(e^{r_{2}(x-x_{0})}-e^{r_{1}(x-x_{0})} \right)\)

    31. \(y=e^{r_{1}(x-x_{0})}[k_{0}+(k_{1}-r_{1}k_{0})(x-x_{0})]\)

    32. \(y=e^{\lambda (x-x_{0})}\left[ k_{0}\cos\omega (x-x_{0})+\left(\frac{k_{1}-\lambda k_{0}}{\omega } \right)\sin\omega (x-x_{0}) \right]\)


    This page titled 11.33: A.5.2- Section 5.2 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?