Skip to main content
Mathematics LibreTexts

11.34: A.5.3- Section 5.3 Answers

  • Page ID
    121432
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(y_{p}=-1+2x+3x^{2};\: y=-1+2x+3x^{2}+c_{1}e^{-6x}+c_{2}e^{x}\)

    2. \(y_{p}=1+x;\: y=1+x+e^{2x}(c_{1}\cos x+c_{2}\sin x)\)

    3. \(y_{p}=-x+x^{3};\: y=-x+x^{3}+c_{1}e^{-7x}+c_{2}e^{-x}\)

    4. \(y_{p} = 1 − x^{2};\: y = 1 − x^{2} + e^{2x} (c_{1} + c_{2}x)\)

    5. \(y_{p} = 2x + x^{3};\: y = 2x + x^{3} + e^{−x} (c_{1} \cos 3x + c_{2} \sin 3x);\: y = 2x + x^{3} + e^{−x} (2 \cos 3x + 3 \sin 3x)\)

    6. \(y_{p} = 1 + 2x;\: y = 1 + 2x + e^{−3x} (c_{1} \cos x + c_{2} \sin x);\: y = 1 + 2x + e^{−3x} (\cos x − \sin x)\)

    8. \(y_{p}=\frac{2}{x}\)

    9. \(y_{p}=4x^{1/2}\)

    10. \(y_{p}=\frac{x^{3}}{2}\)

    11. \(y_{p}=\frac{1}{x^{3}}\)

    12. \(y_{p}=9x^{1/3}\)

    13. \(y_{p}=\frac{2x^{4}}{13}\)

    16. \(y_{p}=\frac{e^{3x}}{3};\: y=\frac{e^{3x}}{3}+c_{1}e^{-6x}+c_{2}e^{x}\)

    17. \(y_{p} = e^{2x};\: y = e^{2x} (1 + c_{1}\cos x + c_{2}\sin x)\)

    18. \(y = −2e^{−2x};\: y = −2e^{−2x} + c_{1}e^{−7x} + c_{2}e^{−x};\: y = −2e^{−2x} − e^{−7x} + e^{−x}\)

    19. \(y_{p} = e^{x};\: y = e^{x} + e^{2x} (c_{1} + c_{2}x);\: y = e^{x} + e^{2x} (1 − 3x)\)

    20. \(y_{p}=\frac{4}{25}e^{x/2};\: y=\frac{4}{45}e^{x/2}+e^{-x}(c_{1}\cos 3x+c_{2}\sin 3x)\)

    21. \(y_{p} = e^{−3x};\: y = e^{−3x} (1 + c_{1}\cos x + c_{2}\sin x)\)

    24. \(y_{p} = \cos x − \sin x;\: y = \cos x − \sin x + e^{4x} (c_{1} + c_{2}x)\)

    25. \(y_{p} = \cos 2x − 2 \sin 2x;\: y = \cos 2x − 2 \sin 2x + c_{1} + c_{2}e^{−x}\)

    26. \(y_{p}=\cos 3x;\: y=\cos 3x+e^{x}(c_{1}\cos\sqrt{2}x+c_{2}\sin\sqrt{2}x)\)

    27. \(y_{p} = \cos x + \sin x;\: y = \cos x + \sin x + e^{−3x} (c_{1} \cos 2x + c_{2} \sin 2x)\)

    28. \(y_{p} = −2 \cos 2x + \sin 2x;\: y = −2 \cos 2x + \sin 2x + c_{1}e^{−4x} + c_{2}e^{−3x};\: y = −2 \cos 2x + \sin 2x + 2e^{−4x} − 3e^{−3x}\)

    29. \(y_{p} = \cos 3x − \sin 3x;\: y = \cos 3x − \sin 3x + e^{3x} (c_{1} + c_{2}x)\: y = \cos 3x − \sin 3x + e^{3x} (1 + 2x)\)

    30. \(y=\frac{1}{\omega _{0}^{2}-\omega ^{2}}(M\cos\omega x+N\sin\omega x)+c_{1}\cos\omega_{0}x+c_{2}\sin\omega_{0}x\)

    33. \(y_{p}=-1+2x+3x^{2}+\frac{e^{3x}}{3};\: y=-1+2x+3x^{2}+\frac{e^{3x}}{3}+c_{1}e^{-6x}+c_{2}e^{x}\)

    34. \(y_{p} = 1 + x + e^{2x};\: y = 1 + x + e^{2x} (1 + c_{1}\cos x + c_{2}\sin x)\)

    35. \(y_{p} = −x + x^{3} − 2e^{−2x};\: y = −x + x^{3} − 2e^{−2x} + c_{1}e^{−7x} + c_{2}e^{−x}\)

    36. \(y_{p} = 1 − x^{2} + e^{x};\: y = 1 − x^{2} + e^{x} + e^{2x} (c_{1} + c_{2}x)\)

    37. \(y_{p}=2x+x^{3}+\frac{4}{45}e^{x/2};\: y=2x+x^{3}+\frac{4}{45}e^{x/2}+e^{-x}(c_{1}\cos 3x+c_{2}\sin 3x)\)

    38. \(y_{p} = 1 − x^{2} + e^{x};\: y = 1 − x^{2} + e^{x} + e^{2x} (1+c_{1}\cos x + c_{2}\sin x)\)


    This page titled 11.34: A.5.3- Section 5.3 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?