11.60: A.9.4- Section 9.4 Answers
( \newcommand{\kernel}{\mathrm{null}\,}\)
selected template will load here
This action is not available.
( \newcommand{\kernel}{\mathrm{null}\,}\)
1. y_{p}=2x^{3}
2. y_{p}=\frac{8}{105}x^{7/2}e^{-x^{2}}
3. y_{p}=x\ln |x|
4. y_{p}=-\frac{2(x^{2}+2)}{x}
5. y_{p}=-\frac{xe^{-3x}}{64}
6. y_{p}=-\frac{2x^{2}}{3}
7. y_{p}=-\frac{e^{-x}(x+1)}{x}
8. y_{p}=2x^{2}\ln |x|
9. y_{p}=x^{2}+1
10. y_{p}=\frac{2x^{2}+6}{3}
11. y_{p}=\frac{x^{2}\ln |x|}{3}
12. y_{p}=-x^{2}-2
13. \frac{1}{4}x^{3}\ln |x|-\frac{25}{48}x^{3}
14. y_{p}=\frac{x^{5/2}}{4}
15. y_{p}=\frac{x(12-x^{2})}{6}
16. y_{p}=\frac{x^{4}\ln |x|}{6}
17. y_{p}=\frac{x^{3}e^{x}}{2}
18. y_{p}=x^{2}\ln |x|
19. y_{p}=\frac{xe^{x}}{2}
20. y_{p}=\frac{3xe^{x}}{2}
21. y_{p}=-x^{3}
22. y=-x(\ln x)^{2}+3x+x^{3}-2x\ln x
23. y=\frac{x^{3}}{2}(\ln |x|)^{2}+x^{2}-x^{3}+2x^{3}\ln |x|
24. y=-\frac{1}{2}(3x+1)xe^{x}-3e^{x}-e^{2x}+4xe^{-x}
25. y=\frac{3}{2}x^{4}(\ln x)^{2}+3x-x^{4}+2x^{4}\ln x
26. y=-\frac{x^{4}+12}{6}+3x-x^{2}+2e^{x}
27. y=\left(\frac{x^{2}}{3}-\frac{x}{2}\right)\ln |x|+4x-2x^{2}
28. y=-\frac{xe^{x}(1+3x)}{2}+\frac{x+1}{2}-\frac{e^{x}}{4}+\frac{e^{3x}}{2}
29. y=-8x+2x^{2}-2x^{3}+2e^{x}-e^{-x}
30. y=3x^{2}\ln x-7x^{2}
31. y=\frac{3(4x^{2}+9)}{2}+\frac{x}{2}-\frac{e^{x}}{2}+\frac{e^{-x}}{2}+\frac{e^{2x}}{4}
32. y=x\ln x+x-\sqrt{x}+\frac{1}{x}+\frac{1}{\sqrt{x}}
33. y=x^{3}\ln |x|+x-2x^{3}+\frac{1}{x}-\frac{1}{x^{2}}
35. y_{p}=\int_{x_{0}}^{x}\frac{e^{(x-t)}-3e^{-(x-t)}+2e^{-2(x-t)} }{6}F(t)dt
36. y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{2}(2x+t)}{6xt^{3}}F(t)dt
37. y_{p}=\int_{x_{0}}^{x}\frac{xe^{(x-t)}-x^{2}+x(t-1) }{t^{4}}F(t)dt
38. y_{p}=\int_{x_{0}}^{x}\frac{x^{2}-t(t-2)-2te^{(x-t)}}{2x(t-1)^{2}}F(t)dt
39. y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}-2e^{(x-t)}+2e^{-(x-t)}-e^{-2(x-t)}}{12}F(t)dt
40. y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{3}}{6x}F(t)dt
41. y_{p}=\int_{x_{0}}^{x}\frac{(x+t)(x-t)^{3}}{12x^{2}t^{3}}F(t)dt
42. y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}(1+2x)+e^{-2(x-t)}(1-2t)-4x^{2}+4t^{2}-2}{32t^{2}}F(t)dt