# 11.60: A.9.4- Section 9.4 Answers

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

1. $$y_{p}=2x^{3}$$

2. $$y_{p}=\frac{8}{105}x^{7/2}e^{-x^{2}}$$

3. $$y_{p}=x\ln |x|$$

4. $$y_{p}=-\frac{2(x^{2}+2)}{x}$$

5. $$y_{p}=-\frac{xe^{-3x}}{64}$$

6. $$y_{p}=-\frac{2x^{2}}{3}$$

7. $$y_{p}=-\frac{e^{-x}(x+1)}{x}$$

8. $$y_{p}=2x^{2}\ln |x|$$

9. $$y_{p}=x^{2}+1$$

10. $$y_{p}=\frac{2x^{2}+6}{3}$$

11. $$y_{p}=\frac{x^{2}\ln |x|}{3}$$

12. $$y_{p}=-x^{2}-2$$

13. $$\frac{1}{4}x^{3}\ln |x|-\frac{25}{48}x^{3}$$

14. $$y_{p}=\frac{x^{5/2}}{4}$$

15. $$y_{p}=\frac{x(12-x^{2})}{6}$$

16. $$y_{p}=\frac{x^{4}\ln |x|}{6}$$

17. $$y_{p}=\frac{x^{3}e^{x}}{2}$$

18. $$y_{p}=x^{2}\ln |x|$$

19. $$y_{p}=\frac{xe^{x}}{2}$$

20. $$y_{p}=\frac{3xe^{x}}{2}$$

21. $$y_{p}=-x^{3}$$

22. $$y=-x(\ln x)^{2}+3x+x^{3}-2x\ln x$$

23. $$y=\frac{x^{3}}{2}(\ln |x|)^{2}+x^{2}-x^{3}+2x^{3}\ln |x|$$

24. $$y=-\frac{1}{2}(3x+1)xe^{x}-3e^{x}-e^{2x}+4xe^{-x}$$

25. $$y=\frac{3}{2}x^{4}(\ln x)^{2}+3x-x^{4}+2x^{4}\ln x$$

26. $$y=-\frac{x^{4}+12}{6}+3x-x^{2}+2e^{x}$$

27. $$y=\left(\frac{x^{2}}{3}-\frac{x}{2}\right)\ln |x|+4x-2x^{2}$$

28. $$y=-\frac{xe^{x}(1+3x)}{2}+\frac{x+1}{2}-\frac{e^{x}}{4}+\frac{e^{3x}}{2}$$

29. $$y=-8x+2x^{2}-2x^{3}+2e^{x}-e^{-x}$$

30. $$y=3x^{2}\ln x-7x^{2}$$

31. $$y=\frac{3(4x^{2}+9)}{2}+\frac{x}{2}-\frac{e^{x}}{2}+\frac{e^{-x}}{2}+\frac{e^{2x}}{4}$$

32. $$y=x\ln x+x-\sqrt{x}+\frac{1}{x}+\frac{1}{\sqrt{x}}$$

33. $$y=x^{3}\ln |x|+x-2x^{3}+\frac{1}{x}-\frac{1}{x^{2}}$$

35. $$y_{p}=\int_{x_{0}}^{x}\frac{e^{(x-t)}-3e^{-(x-t)}+2e^{-2(x-t)} }{6}F(t)dt$$

36. $$y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{2}(2x+t)}{6xt^{3}}F(t)dt$$

37. $$y_{p}=\int_{x_{0}}^{x}\frac{xe^{(x-t)}-x^{2}+x(t-1) }{t^{4}}F(t)dt$$

38. $$y_{p}=\int_{x_{0}}^{x}\frac{x^{2}-t(t-2)-2te^{(x-t)}}{2x(t-1)^{2}}F(t)dt$$

39. $$y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}-2e^{(x-t)}+2e^{-(x-t)}-e^{-2(x-t)}}{12}F(t)dt$$

40. $$y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{3}}{6x}F(t)dt$$

41. $$y_{p}=\int_{x_{0}}^{x}\frac{(x+t)(x-t)^{3}}{12x^{2}t^{3}}F(t)dt$$

42. $$y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}(1+2x)+e^{-2(x-t)}(1-2t)-4x^{2}+4t^{2}-2}{32t^{2}}F(t)dt$$

This page titled 11.60: A.9.4- Section 9.4 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.