Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

11.60: A.9.4- Section 9.4 Answers

( \newcommand{\kernel}{\mathrm{null}\,}\)

1. y_{p}=2x^{3}

2. y_{p}=\frac{8}{105}x^{7/2}e^{-x^{2}}

3. y_{p}=x\ln |x|

4. y_{p}=-\frac{2(x^{2}+2)}{x}

5. y_{p}=-\frac{xe^{-3x}}{64}

6. y_{p}=-\frac{2x^{2}}{3}

7. y_{p}=-\frac{e^{-x}(x+1)}{x}

8. y_{p}=2x^{2}\ln |x|

9. y_{p}=x^{2}+1

10. y_{p}=\frac{2x^{2}+6}{3}

11. y_{p}=\frac{x^{2}\ln |x|}{3}

12. y_{p}=-x^{2}-2

13. \frac{1}{4}x^{3}\ln |x|-\frac{25}{48}x^{3}

14. y_{p}=\frac{x^{5/2}}{4}

15. y_{p}=\frac{x(12-x^{2})}{6}

16. y_{p}=\frac{x^{4}\ln |x|}{6}

17. y_{p}=\frac{x^{3}e^{x}}{2}

18. y_{p}=x^{2}\ln |x|

19. y_{p}=\frac{xe^{x}}{2}

20. y_{p}=\frac{3xe^{x}}{2}

21. y_{p}=-x^{3}

22. y=-x(\ln x)^{2}+3x+x^{3}-2x\ln x

23. y=\frac{x^{3}}{2}(\ln |x|)^{2}+x^{2}-x^{3}+2x^{3}\ln |x|

24. y=-\frac{1}{2}(3x+1)xe^{x}-3e^{x}-e^{2x}+4xe^{-x}

25. y=\frac{3}{2}x^{4}(\ln x)^{2}+3x-x^{4}+2x^{4}\ln x

26. y=-\frac{x^{4}+12}{6}+3x-x^{2}+2e^{x}

27. y=\left(\frac{x^{2}}{3}-\frac{x}{2}\right)\ln |x|+4x-2x^{2}

28. y=-\frac{xe^{x}(1+3x)}{2}+\frac{x+1}{2}-\frac{e^{x}}{4}+\frac{e^{3x}}{2}

29. y=-8x+2x^{2}-2x^{3}+2e^{x}-e^{-x}

30. y=3x^{2}\ln x-7x^{2}

31. y=\frac{3(4x^{2}+9)}{2}+\frac{x}{2}-\frac{e^{x}}{2}+\frac{e^{-x}}{2}+\frac{e^{2x}}{4}

32. y=x\ln x+x-\sqrt{x}+\frac{1}{x}+\frac{1}{\sqrt{x}}

33. y=x^{3}\ln |x|+x-2x^{3}+\frac{1}{x}-\frac{1}{x^{2}}

35. y_{p}=\int_{x_{0}}^{x}\frac{e^{(x-t)}-3e^{-(x-t)}+2e^{-2(x-t)} }{6}F(t)dt

36. y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{2}(2x+t)}{6xt^{3}}F(t)dt

37. y_{p}=\int_{x_{0}}^{x}\frac{xe^{(x-t)}-x^{2}+x(t-1) }{t^{4}}F(t)dt

38. y_{p}=\int_{x_{0}}^{x}\frac{x^{2}-t(t-2)-2te^{(x-t)}}{2x(t-1)^{2}}F(t)dt

39. y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}-2e^{(x-t)}+2e^{-(x-t)}-e^{-2(x-t)}}{12}F(t)dt

40. y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{3}}{6x}F(t)dt

41. y_{p}=\int_{x_{0}}^{x}\frac{(x+t)(x-t)^{3}}{12x^{2}t^{3}}F(t)dt

42. y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}(1+2x)+e^{-2(x-t)}(1-2t)-4x^{2}+4t^{2}-2}{32t^{2}}F(t)dt


This page titled 11.60: A.9.4- Section 9.4 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

Support Center

How can we help?