11.61: A Brief Table of Integrals (by Trench)
( \newcommand{\kernel}{\mathrm{null}\,}\)
selected template will load here
This action is not available.
( \newcommand{\kernel}{\mathrm{null}\,}\)
∫uαdu=uα+1α+1+c,α≠−1
∫duu=ln|u|+c
∫cosudu=sinu+c
∫sinudu=−cosu+c
∫tanudu=−ln|cosu|+c
∫cotudu=ln|sinu|+c
∫sec2udu=tanu+c
∫csc2udu=−cotu+c
∫secudu=ln|secu+tanu|+c
∫cos2udu=u2+14sin2u+c
∫sin2udu=u2−14sin2u+c
∫du1+u2du=tan−1u+c
∫du√1−u2du=sin−1u+c
∫1u2−1du=12ln|u−1u+1|+c
∫coshudu=sinhu+c
∫sinhudu=coshu+c
∫udv=uv−∫vdu
∫ucosudu=usinu+cosu+c
∫usinudu=−ucosu+sinu+c
∫ueudu=ueu−eu+c
∫eλucosωudu=eλu(λcosωu+ωsinωu)λ2+ω2+c
∫eλusinωudu=eλu(λsinωu+ωcosωu)λ2+ω2+c
∫ln|u|du=uln|u|−u+c
∫uln|u|du=u2ln|u|2−u24+c
∫cosω1ucosω2udu=sin(ω1+ω2)u2(ω1+ω2)+sin(ω1−ω2)u2(ω1−ω2)+c(ω1≠±ω2)
∫sinω1usinω2udu=−sin(ω1+ω2)u2(ω1+ω2)+sin(ω1−ω2)u2(ω1−ω2)+c(ω1≠±ω2)
∫sinω1ucosω2udu=−cos(ω1+ω2)u2(ω1+ω2)−cos(ω1−ω2)u2(ω1−ω2)+c(ω1≠±ω2)