# 11.61: A Brief Table of Integrals (by Trench)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

$$\int u^{\alpha} du=\frac{u^{\alpha +1}}{\alpha +1}+c,\quad \alpha\neq -1$$

$$\int \frac{du}{u}=\ln |u|+c$$

$$\int\cos u\:du=\sin u+c$$

$$\int\sin u\:du=-\cos u+c$$

$$\int\tan u\:du=-\ln |\cos u|+c$$

$$\int\cot u\:du=\ln |\sin u|+c$$

$$\int\sec ^{2}u\:du=\tan u+c$$

$$\int\csc ^{2}u\:du=-\cot u+c$$

$$\int\sec u\: du=\ln |\sec u+\tan u|+c$$

$$\int\cos ^{2}u\:du =\frac{u}{2}+\frac{1}{4}\sin 2u+c$$

$$\int\sin ^{2}u\: du=\frac{u}{2}-\frac{1}{4}\sin 2u+c$$

$$\int\frac{du}{1+u^{2}}du=\tan ^{-1}u+c$$

$$\int\frac{du}{\sqrt{1-u^{2}}}du=\sin ^{-1}u+c$$

$$\int\frac{1}{u^{2}-1}du=\frac{1}{2}\ln |\frac{u-1}{u+1}|+c$$

$$\int\cosh u\:du =\sinh u+c$$

$$\int\sinh u\:du =\cosh u+c$$

$$\int u\:dv =uv-\int v\:du$$

$$\int u\cos u\: du=u\sin u+\cos u+c$$

$$\int u\sin u\: du=-u\cos u+\sin u+c$$

$$\int ue^{u}du=ue^{u}-e^{u}+c$$

$$\int e^{\lambda u}\cos\omega u\:du =\frac{e^{\lambda u}(\lambda\cos\omega u+\omega\sin\omega u)}{\lambda ^{2}+\omega ^{2}}+c$$

$$\int e^{\lambda u}\sin\omega u\:du =\frac{e^{\lambda u}(\lambda\sin\omega u+\omega\cos\omega u)}{\lambda ^{2}+\omega ^{2}}+c$$

$$\int\ln |u|\:du=u\ln |u|-u+c$$

$$\int u\ln |u|\:du =\frac{u^{2}\ln |u|}{2}-\frac{u^{2}}{4}+c$$

$$\int\cos\omega _{1}u\cos\omega _{2}u\:du =\frac{\sin (\omega _{1}+\omega _{2})u}{2(\omega _{1}+\omega _{2})}+\frac{\sin (\omega _{1}-\omega _{2})u}{2(\omega _{1}-\omega _{2})}+c\quad (\omega _{1}\neq\pm\omega _{2})$$

$$\int\sin\omega _{1}u\sin\omega _{2}u\:du =-\frac{\sin (\omega _{1}+\omega _{2})u}{2(\omega _{1}+\omega _{2})}+\frac{\sin (\omega _{1}-\omega _{2})u}{2(\omega _{1}-\omega _{2})}+c\quad (\omega _{1}\neq\pm\omega _{2})$$

$$\int\sin\omega _{1}u\cos\omega _{2}u\:du =-\frac{\cos(\omega _{1}+\omega _{2})u}{2(\omega _{1}+\omega _{2})}-\frac{\cos (\omega _{1}-\omega _{2})u}{2(\omega _{1}-\omega _{2})}+c\quad (\omega _{1}\neq\pm\omega _{2})$$

This page titled 11.61: A Brief Table of Integrals (by Trench) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.