11.60: A.9.4- Section 9.4 Answers
( \newcommand{\kernel}{\mathrm{null}\,}\)
selected template will load here
This action is not available.
( \newcommand{\kernel}{\mathrm{null}\,}\)
1. yp=2x3
2. yp=8105x7/2e−x2
3. yp=xln|x|
4. yp=−2(x2+2)x
5. yp=−xe−3x64
6. yp=−2x23
7. yp=−e−x(x+1)x
8. yp=2x2ln|x|
9. yp=x2+1
10. yp=2x2+63
11. yp=x2ln|x|3
12. yp=−x2−2
13. 14x3ln|x|−2548x3
14. yp=x5/24
15. yp=x(12−x2)6
16. yp=x4ln|x|6
17. yp=x3ex2
18. yp=x2ln|x|
19. yp=xex2
20. yp=3xex2
21. yp=−x3
22. y=−x(lnx)2+3x+x3−2xlnx
23. y=x32(ln|x|)2+x2−x3+2x3ln|x|
24. y=−12(3x+1)xex−3ex−e2x+4xe−x
25. y=32x4(lnx)2+3x−x4+2x4lnx
26. y=−x4+126+3x−x2+2ex
27. y=(x23−x2)ln|x|+4x−2x2
28. y=−xex(1+3x)2+x+12−ex4+e3x2
29. y=−8x+2x2−2x3+2ex−e−x
30. y=3x2lnx−7x2
31. y=3(4x2+9)2+x2−ex2+e−x2+e2x4
32. y=xlnx+x−√x+1x+1√x
33. y=x3ln|x|+x−2x3+1x−1x2
35. yp=∫xx0e(x−t)−3e−(x−t)+2e−2(x−t)6F(t)dt
36. yp=∫xx0(x−t)2(2x+t)6xt3F(t)dt
37. yp=∫xx0xe(x−t)−x2+x(t−1)t4F(t)dt
38. yp=∫xx0x2−t(t−2)−2te(x−t)2x(t−1)2F(t)dt
39. yp=∫xx0e2(x−t)−2e(x−t)+2e−(x−t)−e−2(x−t)12F(t)dt
40. yp=∫xx0(x−t)36xF(t)dt
41. yp=∫xx0(x+t)(x−t)312x2t3F(t)dt
42. yp=∫xx0e2(x−t)(1+2x)+e−2(x−t)(1−2t)−4x2+4t2−232t2F(t)dt