Skip to main content
Mathematics LibreTexts

0.3: Functions

  • Page ID
    131015
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

     

    Definition:  Cartesian Product

    Let \(A\) be a set. Then \(A \times A= \{(a_1,a_2)| a_1, a_2 \in A  \} \) is the Cartesian product of \(A\).

    Example \(\PageIndex{1}\)

    If \(A = \mathbb{R}\) then this is the Cartesian plane -  Like \(\{x,y: x,y \in A\}\).

    Definition: Function

    A function \(f\) is a subset (symbol is \(\subseteq\)) of \(A \times B\) such that for every \(a \in A\) there exists a unique \(b \in B\) such that \(f(a)=b\). 

    Denoted by \(f: A \rightarrow B\) or \(A \xrightarrow{f} B\).

    \(A\) is the domain of the function \(f\).  

    \(B\) is the co-domain of the function \(f\).

    The range of \(f\) is \(f(A)=\big{\{}f(x): x \in A \big{\}} \subseteq B = Im(f)\), the image of \(f.\)

    A well-defined function is one that for every value of \(A\), there is one and only one value of \(B\).

    Screen Shot 2023-06-27 at 12.56.17 PM.png

     

    Definition: 

    Let \(f\) be a function from \(A \rightarrow B\).

    1. \(f\) is called onto (surjective) if \(f(A)=B\).

    2. \(f\) is called one to one (injective) if \(f(x_1)=f(x_2), x_1,x_2 \in A \) then \(x_1=x_2\).

    3. \(f\) is bijective if it is surjective and injective.

    4. A function can be injective, surjective, bijective (both injective & surjective), or neither.

     Note: 

    Let \(f: A \rightarrow B\).  If \(f\) is 1-1 and onto then \(f\) is a bijection from \(A \rightarrow B.\) 

    If there is a bijection between two finite sets, the number of elements in each set is the same.  Notationally:  |A| = |B|.

    Example \(\PageIndex{2}\)

    Screen Shot 2023-06-27 at 12.58.35 PM.png

    Example \(\PageIndex{3}\)

    Consider the mapping:

    Screen Shot 2023-06-27 at 1.00.57 PM.png

    Is this mapping 

    a) Well defined?

    b)  Is it surjective? 

    c) Is it injective? 

    d) Is it bijective?

    Solution

    The function is well-defined. Not injective. Not subjective, not bijective.

     

    Example \(\PageIndex{4}\)

    Consider the mapping:

    Screen Shot 2023-06-27 at 1.36.38 PM.png

    Is this mapping 

    a) Well defined?

    b)  Is it surjective? 

    c) Is it injective? 

    d) Is it bijective?

    Solution

    This is well defined bijective function.

    Example \(\PageIndex{5}\)

    Given \(f: \mathbb{Q} \rightarrow \mathbb{Z}\) where \(\mathbb{Q}=\{\frac{a}{b}:a,b \in \mathbb{Z}, b \ne 0 \}\) and \(f(\frac{a}{b})=a\).  Is this a well-defined function?  


    Solution

    Let \(A\) and \(B\) be sets such that \(A=\{\frac{a}{b}:a,b \in \mathbb{Z}, a \ne 0\}\) and \(B=\mathbb{Z}\).

    Using a counterexample, \(f(\frac{a}{b})\) is not a well-defined function since \(f(\frac{1}{2})=1\) and \(f(\frac{2}{4})=2\), but \(\frac{1}{2}=\frac{2}{4}\).  This is an example of an element in \(A\) that maps to more than one element in \(B\).

     

    Example \(\PageIndex{6}\)

    Let

     \(\mathbb{Q}=\big{\{}\frac{a}{b}: b> 0,\text{and } gcd(a,b)=1 \big{\}}\)

    and \(f: \mathbb{Q} \rightarrow \mathbb{Z}\) that is defined by

     \(f(\frac{a}{b})=a.\)

     a) Is \(f\) a well-defined function? b)  Is it surjective?  c) Is it injective?  d) Is it bijective?

    Solution

    1. The function is well-defined.

    Let \(A\) and \(B\) be set.

    Let \(a \in A\).

    We need to show that if \(f(a)=b\) then \(b\in B\) and if \(f(a)=b_1\) that \(b=b_1\).

    We are given \(f: \mathbb{Q} \rightarrow \mathbb{Z}\), which means that this is a function thus \(f(a)\) will map to one and only one element of \(B\).  Thus if \(f(a)=b\) and if \(f(a)=b_1\) then \(b=b_1\).

    In b) below, we have shown that the function is surjective, thus \(f(a)=b\),

     
    1. The function is surjective

      Proof:

    We shall show that \(f(\mathbb{Q})=\mathbb{Z}\) by showing that  \(f(\mathbb{Q}) \subseteq \mathbb{Z}\) and  \(\mathbb{Z} \subseteq f(\mathbb{Q})\).

    Since we are given \(f: \mathbb{Q} \rightarrow \mathbb{Z}\),  \(f(\mathbb{Q}) \subseteq \mathbb{Z}\).

    Next, we shall show that \(\mathbb{Z} \subseteq f(\mathbb{Q})\).

    Let \(n \in \mathbb{Z}\), then \(\frac{n}{1} \in \mathbb{Q}\) and \(f\big(\frac{n}{1}\big)=n\).

    Hence \(n \in f(\mathbb{Q})\).

    Hence \(\mathbb{Z} \subseteq f(\mathbb{Q})\).

    Since \(\mathbb{Z} \subseteq f(\mathbb{Q})\) and \(f(\mathbb{Q}) \subseteq \mathbb{Z}, f(\mathbb{Q})=\mathbb{Z}\).◻

     
    1. The function is not injective.

      Counterexample:

    Let \(A=\big{\{}\frac{a}{b}: b> 0,\text{and } gcd(a,b)=1 \big{\}}\) and \(B=\mathbb{Z}\).

    Note \(\frac{1}{4},  \frac{1}{3} \in A\) and that \(f(\frac{1}{4}),  f(\frac{1}{3}) \in B\) and that \(f(\frac{1}{4})=f(\frac{1}{3})=1\). 

    Since \(\frac{1}{4} \ne \frac{1}{3}\) , the function is not injective.

     
    1. The function is not bijective since it has been shown not to be both injective and surjective.

     

    Operation on functions: Composition

     

    Definition:Composition of functions

    Let \(f: A \rightarrow B\) and \(g: B \rightarrow C\). Then the composition functions of \(g\) and \(f\), \(g \circ f: A \to C \), defined by 

    \((g \circ f)(a)=g(f(a)), \; \forall a \in A\).

    Screen Shot 2023-06-27 at 1.51.29 PM.png

    Definition: Identity function

    Identity function \(id_A: A \rightarrow A\) defined by \(id_A(x)=x, \forall x \in A\).

    Definition: Inverse of a function

    Let \(f: A \rightarrow B\) then \(f\) has an inverse \(g: B \rightarrow A\) if \((f \circ g)= id_B\) and \((g \circ f)=id_A\).  Note the domain of \(f \circ g\) is the domain of \(g\).

    Let \(f:A \rightarrow B\) be a bijection.  Then the inverse of \(f\), denoted by \(f^{-1}:B \rightarrow A\) defined by \(f^{-1}(b)=a\) if \(f(a)=b\) if \(a \in A\) and \(b \in B\). In this case, \(f \circ f^{-1}=id_A, \) and \(f^{-1}\circ f =id_B.\)

     

    Screen Shot 2023-06-27 at 2.25.13 PM.png 

    Example \(\PageIndex{7}\)

    Let \(f: A \rightarrow B\) and \(g: B \rightarrow C\). Then \(g \circ f: A \to C.\) 

    1. If \(f\) and \(g\) are surjective, then \(g \circ f\) is surjective.

    Proof:

    We will show that \(g \circ f\) is surjective.

    Let \(c \in C\) . Since g is surjective, there exists \(b \in B\)  such that \(g(b)=c.\)

    Since f is surjective, there exists \(a \in A\)  such that \(f(b)=a\).

    Hence there exists \(a \in A\) such that \(gf(f(a))=c.\)

    Therefore, if \(f\) and \(g\) are surjective, then \(g \circ f\)  is surjective.◻

    (better proof) If \(f\) is onto and \(g\) is onto then \(g \circ f\) is onto.

    Proof:

    We shall show that \((g \circ f)(A)=C\).

    Since \(f\) and \(g\) are onto, by definition of a function, \((g \circ f)(A) \subseteq C\).

    Now we need to show that \(C \subseteq (g \circ f)(A)\).

    Let \(c \in C\).

    Since \(g\) is onto \(\exists b \in B\) s.t. \(c=g(b)\).

    Since \(f\) is onto, \(\exists a \in A\) s.t. \(b=f(a)\).

    Consider \((g \circ f)(a)=g(f(a))\) (by definition)

            \(=g(b)\)

            \(=c\).

    Therefore \(c \in (g \circ f)(A)\).

    Hence \(C \subseteq (g \circ f)(A)\).

    Since \((g \circ f)(A) \subseteq C\) and \(C \subseteq (g \circ f)(A)\), then \(g \circ f\) is onto.◻

     
    Example \(\PageIndex{8}\)
    1. If \(f\) and \(g\) are injective, then \(g \circ f\) is injective. That is,

    If \(f\) is 1-1 and \(g\) is 1-1 then \(g \circ f\) is 1-1.

    Proof:

    Let   \(a_1,a_2 \in A\)  such that \(g \circ f (a_1)= g\circ f(a_2).\)  Then \(g(f(a_1))=g(f(a_2)).\)

    Since  \(g\) is 1-1, \(f(a_1)=f(a_2)\).

    Since,  \(f\) is 1-1, \(a_1=a_2.\)

     

    Hence \(g \circ f\)  is injective.

     

     

    Example \(\PageIndex{9}\)

    Given \(A\) is a matrix and \(T_A:\mathbb{R}^2 \rightarrow \mathbb{R}^2\) defined by \(T_A \begin{bmatrix} x\\
    y\end{bmatrix} = \begin{bmatrix} 1 &1\\
    0 & 1\end{bmatrix} \begin{bmatrix} x\\
    y\end{bmatrix}\).  Note this is a matrix transformation which is linear.

    1. Is \(T_A\) 1-1?

    Yes, \(T_A\) is 1-1.

    Proof:

    Let \(\begin{bmatrix} x_1\\
    y_1\end{bmatrix}\)and \(\begin{bmatrix} x_2\\
    y_2\end{bmatrix} \in \mathbb{R}^2\) s.t. \(T_A \begin{bmatrix} x_1\\
    y_1\end{bmatrix} =T_A \begin{bmatrix} x_2\\
    y_2\end{bmatrix}\).

    We will show that \(\begin{bmatrix} x_1\\
    y_1\end{bmatrix} =\begin{bmatrix} x_2\\
    y_2\end{bmatrix}\).

    \(T_A \begin{bmatrix} x\\
    y\end{bmatrix} =\begin{bmatrix} x+y\\
    y\end{bmatrix}\).

    Thus  \(\begin{bmatrix} x_1 +y_1\\
    y_1\end{bmatrix} =\begin{bmatrix} x_2+y_2\\
    y_2\end{bmatrix}\).

    Thus \(x_1+y_1=x_2+y_2\) and \(y_1=y_2\).

    Thus \(x_1=x_2\) and \(y_1=y_2\).

    Hence \(\begin{bmatrix} x_1\\
    y_1\end{bmatrix} =\begin{bmatrix} x_2\\
    y_2\end{bmatrix}\).

    Thus \(T_A\) is 1-1.◻

     
    1. Is \(T_A \begin{bmatrix} x\\
      y\end{bmatrix} \) onto?

    Yes, \(T_A \begin{bmatrix} x\\
    y\end{bmatrix} \) is onto.

    Proof:

    We know by definition that \(T_A \begin{bmatrix} x\\
    y\end{bmatrix} \subseteq \mathbb{R}^2\).

    We need to show that \(\mathbb{R}^2 \subseteq T_A \begin{bmatrix} x\\
    y\end{bmatrix}\).

    Let \( \begin{bmatrix} a\\
    b\end{bmatrix} \in \mathbb{R}^2\).

    Find \( \begin{bmatrix} x\\
    y\end{bmatrix} \in \mathbb{R}^2\) s.t. \(\begin{bmatrix} 1 &1\\
    0 & 1\end{bmatrix} \begin{bmatrix} x\\
    y\end{bmatrix}=\begin{bmatrix} a\\
    b\end{bmatrix}\).

    \(\begin{bmatrix} x+y\\
    y\end{bmatrix} =\begin{bmatrix} a\\
    b\end{bmatrix}\).

    Thus \(y=b\) and \(x=a-b\).

    Thus \(T_A \begin{bmatrix} a-b\\
    b\end{bmatrix} =\begin{bmatrix} a\\
    b\end{bmatrix}\).

    Thus \(T_A\) is onto.◻

     
    1. Does \(T_A\) have an inverse?  If so, what is it?

    a) Yes \(T_A\) has an inverse since it is a bijection (1-1 and onto) ∴ \(T_A^{-1}\) exists.

    Proof:  By definition?  Obvious?

    b) \(T_A^{-1}: \mathbb{R}^2 \rightarrow \mathbb{R}^2\).

    \(T_A^{-1} \begin{bmatrix} x\\
    y\end{bmatrix} =\begin{bmatrix} 1 & -1\\
    0 & 1\end{bmatrix} \begin{bmatrix} x\\
    y\end{bmatrix}\)

        \(=\begin{bmatrix} x-y\\
    y\end{bmatrix} \).

    Check: \( T_A^{-1} \cdot T_A=\begin{bmatrix} 1 & -1\\
    0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1\\
    0 & 1\end{bmatrix} =\begin{bmatrix} 1 & 0\\
    0 & 1 \end{bmatrix}\).

    Example \(\PageIndex{10}\)

    Let \(f: A \rightarrow B\) and \(g: B \rightarrow C\). Then \(g \circ f:A \to C\)  . Given \(g \circ f\) is injective and \(f\) is onto, prove that \( g\) is injective.

    Proof:

    Assume \(g \circ f\) is injective.  (by definition)

    Let \(x_1, x_2 \in B\) s.t. \(g(x_1)=g(x_2)\).

    We shall show that \(x_1=x_2\).

    Let \(a_1, a_2 \in A\).

    Since \(f\) is surjective (by definition), we know that \(f(a_1)=x_1\) and \(f(a_2)=x_2\).

    Since \(x_1 \in B\) and \(f\) is surjective, \(\exists a_1 \in A\) s.t. \(f(a_1)=x_1\).

    Since \(x_2 \in B\) and \(f\) is surjective, \(\exists a_2 \in A\) s.t. \(f(a_2)=x_2\).

    Since \(g(x_1)=g(x_2)\), then \(g(f(a_1))=g(f(a_2))\) and \(g \circ f)(a_1)=(g \circ f)(a_2)\).

    Since \(g \circ f)\) is injective, \(a_1=a_2\).

    Thus \(f(a_1)=f(a_2)\) since \(f\) is a function.

    Therefore, \(x_1=x_2\).

    Hence \(g\) is injective.

    Example \(\PageIndex{11}\)

    Consider the mapping \(\alpha\):

     Screen Shot 2023-06-27 at 1.36.38 PM.png

    Find \(\alpha^2\) , \(\alpha^3\) and \(\alpha^{-1}\).


    This page titled 0.3: Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?