2.3: Subgroups
( \newcommand{\kernel}{\mathrm{null}\,}\)
Subgroups are non-empty subsets of a group that are themselves groups. In this section, we will explore how to define and characterize subgroups.
Let G be a group. Let H is a non empty subset of G and (H,∗) is a group, then H is a subgroup of G. We write this as H≤G.
Trivial subgroups of G are {e} and G (the group itself).
To ensure a set is a group, we need to check for the following five conditions:
-
Non-empty set,
-
Closure,
-
Associativity,
-
Identity, and
-
inverse.
The following theorem allows us to check three conditions (rather than 5) to ensure a subset is a subgroup.
- The trivial subgroups of a group G are {e} and G.
- (Z,+) is a subgroup of (R,+). In fact Z⊂Q⊂R are subgroups of R under addition.
- But (Q∗,⋅) is not a subgroup of (R,+). (why?)
Let (G,∗) be a group then H⊆G is a subgroup if and only if
The following conditions are satisfied:
-
The identity e∈G is in H.
-
If h1,h2∈H, then h1∗h2∈H.
-
If h∈H then h−1∈H.
- Proof
-
Assume that H⊆G.
We shall show that eH=eG, where eH is the identity of H and eH is the identity of G.
Thus, it is clear that H≤G.◻
-
-
From (2), we have shown h1∗h2∈H,∀h1,h2∈H.
-
From (1), we have shown the identity.
-
From (3), we have shown the inverses exist.
-
Every element of h1,h2,h3∈G therefore associativity applies because H inherits it from G by definition.
-
-
Conversely, assume that H⊆G satisfies 1, 2, and 3 shown in Theorem 1.
From (1), we have shown that H is a non-empty set - it has at least an identity.
Since eG is the identity of G and eH∈G, eGeH=eHeG=eH.
Further, eH∈H,e−1H=eH∈H.
Since eH,e−1H∈G, eHe−1H=eG, but eHe−1H=eH.
Hence eG=eH.◻
Note: all subgroups of a group have a common element - the identity e. They could have more common elements. Since H is a subset of G, eH is in H by default.
2. We shall show that, if h1,h2∈H, then h1∗h2∈H.
Let h1,h2∈H.
Since (H,∗) is a group, h1∗h2∈H.◻
Note a group is closed by definition.
3. We shall show that,if h∈H then h−1∈H.
Since (H,∗) is a group, h−1∈H.◻
Note each element in a group has an inverse by definition.
H≤G iff:
H≠{}.
(H,∗) is a group. Need to check:
-
,h1∗h2∈H,∀h1,h2∈H
-
e∈H, where e∈G,
-
h−1∈H,∀h∈H,
-
h1(h2h3)=(h1h2)h3,∀a,b,c∈H.
-
-
The following theorem allows us to check two conditions (rather than 5) to ensure a subset is a subgroup.
Let (G,∗) be a group.
Then H(⊆G) is a subgroup of G iff the following conditions are satisfied:
-
eG∈H, and
-
g∗h−1∈H,∀g,h∈H.
- Proof:
-
Assume that H≤G.
Assume that H⊆G.
Since e∗h2∈H,e∗h−12∈H.
Further, eh−12=h−12∈H.
Since h1∗h2∈H, h1∗(h−12)−1∈H.
Therefore h1∗h2∈H. ◻
It has an identity since H≠{}.
See proof of (a) above
Associativity comes because h1,h2,h3∈H.
-
Let h1,h2∈H.
Conversely, assume that H⊆G satisfies (1) and (2) of Theorem 2.
We shall show H≤G.
H≠{}. Since we have a group, we have at least an identity.
h1∗h2∈H,∀h1,h2∈H,
e∈H, where e∈G,
h−1∈H,∀h∈H,
h1(h2h3)=(h1h2)h3,∀a,b,c∈H.
We shall show that g∗h−1∈H,∀g,h∈H.
Then h−1∈H because H⊆G.
Since g,h−1∈H, gh−1∈H,
Hence the result.◻
H≤G iff:
H≠{}.
(H,∗) is a group. Need to check:
We shall show that eH=eG, where eH is the identity of H and eH is the identity of G.
Since eG is the identity of G and eH∈G, eGeH=eHeG=eH.
Further, eH∈H,e−1H=eH∈H.
Since eH,e−1H∈G, eHe−1H=eG, but eHe−1H=eH.
Hence eG=eH.◻
Let g,h∈H.
-
Consider (R∗,∙). Decide if the following sets form subgroups of R∗.
-
H={x∈R∗|x=1 or x is irrational }.
No.
Counter example:
Consider √2∈H.
Further √2∙√2=2 but 2∉H
Therefore since there is no closure, H≰R∗.◻
-
K={x∈R∗|x≥1}.
No.
Counter example:
Consider 2∈K.
Note that 2−1=12, but 12∉K.
Thus the inverse of 2 does not exist.
Since a−1∄∀a∈K, K≰R∗.◻
Let G=(M22(R),+).
Suppose you take this matrix s.t. the trace of the matrix is zero.
Thus H={[abcd]|a+d=0}.
Show that H≤G.
Solution:Note that [0000] is the identity of G and it is clearly an element of H. Thus condition (1) of Theorem 2 is satisfied.
We will show that g∗h−1∈H,∀g,h−1∈H.
Let [abcd],[efgh]∈H.
Then a+d=0 and e+h=0 since the two matrices belong to H.
Consider [abcd]+[−e−f−g−h]=[a−eb−fc−gd−h].
Then (a−e)+(d−h)=(a+d)−(e+h)=0−0=0.
Hence [a−eb−fc−gd−h]∈H.
Thus H≤G.
Let GL2(R)={A=[abcd]|a,b,c,d∈R,det where GL_2(\mathbb{R}) stands for General Linear Group that is a 2 \times 2 matrix and SL_2(\mathbb{R})= \Big\{ A=\begin{bmatrix}a & b\\ c & d\end{bmatrix} \big| a,b,c,d \in \mathbb{R}, \det {(A)} =ad-bc = 1 \Big\}, where SL_2(\mathbb{R}). Show that SL_2( \mathbb{R}) \le GL_2\mathbb{R}).
Let n be a nonnegative integer, Then show that n\mathbb{Z}=\{nm|m\in \mathbb{Z}\} is a subgroup of (\mathbb{Z},+).
- Answer
-
Add texts here. Do not delete this text first.
Let G be a group. If G is finite and |G|=n then we say that the order of G=n.
Subgroup test for finite groups:
Let H \subseteq G.
Then H \le G iff:
-
H \ne \{\}. (non-empty).
-
a, b \in H then ab \in H (closed).
Find all subgroups of Klein 4 (K_4) Group K_4=\{e, a, b, c\} such that a^2=b^2=c^2=e with the product of any two distinct non-identity elements is the third: ab = c, ac = b, and bc = a.
Solution
Since K_4 is a finite Group, H_1=\{e,a\}, H_2=\{e,b\} and H_3=\{e,c\} are subgroups of K_4. Any subgroup of K_4 with more than 3 elements must contain two distinct non-identity elements. Therefore it must contain the third. Hence \{e\}, H_1=\{e,a\}, H_2=\{e,b\} and H_3=\{e,c\}, K_4 are subgroups of K_4.
Lattice Diagram of all subgroups

Special subgroups
Centralizer of an element
Let G be a group. For any a \in G, the Centralizer of a in the group G, C(a)=\{g \in G|ag=ga\}.
Let G be a group. For any a \in G, the Centralizer of a in the group G, C(a)=\{g \in G|ag=ga\}. Then C(a)\le G.
- Proof
-
If C(a)=\{g \in G|ag=ga\}=G, then we are done. Otherwise, let x_1, x_2 \in C(a) .
We will show that x_1x_2^{-1} \in C(a) and e_G \in C(a) .
Consider \begin{align*} ax_1 &=x_1a\\ ax_1x_2^{-1} &=x_1ax_2^{-1} \\ ax_1x_2^{-1} &=x_1(ax_2^{-1}) \\ ax_1x_2^{-1}&=x_1(x_2^{-1}a) \\ax_1x_2^{-1} &=x_1x_2^{-1}a \end{align*} , x_1,x_2^{-1} \in C(a) .
Since x_2,x_2^{-1} \in C(a) , x_2x_2^{-1}=e , where e is the identity element, e in C(a) .
Since x_1x_2^{-1}, e \in C(a) , C(a) \le G .◻
Let G=GL(2,\mathbb{R}). Then find
-
C \Bigg( \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) .
-
C \Bigg( \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg).
Solution:
Let \begin{bmatrix} a & b\\ c & d \end{bmatrix} \in G, Then a,b,c,d \in \mathbb{R} , and ad-bc \ne 0.
Consider C \Bigg( \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) means that \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}\begin{bmatrix}a & b\\ c & d \end{bmatrix}=\begin{bmatrix}a & b\\ c & d \end{bmatrix}\begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}.
Thus \begin{bmatrix}a+c & b+d\\ a & b \end{bmatrix}=\begin{bmatrix}a+b & a\\ c+d & c \end{bmatrix} .
Thus a+b=a+c, a=b+d, c+d=a and c=b.
Thus C\Bigg(\begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{A= \begin{bmatrix} a & b\\ b & a-b \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det(A) \ne 0 \; \Bigg\}.
-
C \Bigg( \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg).
Let \begin{bmatrix} a & b\\ c & d \end{bmatrix} \in G, Then a,b,c,d \in \mathbb{R} , and ad-bc \ne 0.
Consider C \Bigg( \begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix}\Bigg) means that \begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix}a & b\\ c & d \end{bmatrix}=\begin{bmatrix}a & b\\ c & d \end{bmatrix}\begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix}.
Thus \begin{bmatrix}c & d\\ a & b \end{bmatrix}=\begin{bmatrix}b & a\\ d & c \end{bmatrix} .
Thus b=c and d=a.
Thus C\Bigg(\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{B= \begin{bmatrix} a & b\\ b & a \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det(B) \ne 0 \; \Bigg\}.
Center of a group
Let G be a group. Then the center of G is defined as, Z(G)=\{x \in G| gx=xg \forall \; g \in G \}.
Let (G, \ast ) be a group then Z(G) is a subgroup of G.
- Proof:
-
Let G be a group and g \in G.
We will show that Z(G)=\{x \in G| gx=xg \; \forall g \in G \}.
Let e be the identity of G.
Since eg=ge \; \forall g \in G, e \in Z(G).
Let x_1, x_2 \in Z(G).
We shall show that x_1x_2^{-1} \in Z(G).
Consider that x_2^{-1}g=gx_2^{-1}.
Further (x_1x_2^{-1})g=x_1gx_2^{-1}.
=(x_1g)x_2^{-1}
=(gx_1)x_2^{-1}
=g(x_1x_2^{-1}).◻
Note that if G is abelian, Z(G)=G.
Let G=GL(2,\mathbb{R}). Then find \mathbb{Z}(G).
Solution:
\mathbb{Z}(G)= \{ g \in G| gx=xg, \forall x \in G\}.
Let \begin{bmatrix} a & b c & d \end{bmatrix} \in G, Then a,b,c,d \in \mathbb{R} , and ad-bc \ne 0.
We have shown C\Bigg(\begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{ \begin{bmatrix} a & b\\ b & a-b \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det \ne 0 \; \Bigg\} and C\Bigg(\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{ \begin{bmatrix} a & b b & a \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det \ne 0 \; \Bigg\}, \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}, \begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix} \in G.
Thus for \begin{bmatrix} a & b\\ c & d \end{bmatrix} to be in \mathbb{Z}(G), \begin{bmatrix} a & b\\ b & a-b \end{bmatrix} = \begin{bmatrix} a & b\\ b & a \end{bmatrix} .
Thus since a-b=a, b=0.
Thus, \mathbb{Z}(G) =\Bigg\{ \begin{bmatrix} a & 0\\ 0 & a \end{bmatrix} \Bigg| a \in \mathbb{R}, a \ne 0 \; \Bigg\}.
Prove that for each element a \in G, where G is a group, that C(a)=C(a^{-1}).
Proof:
Let x_1 \in C(a) s.t. ax_1=x_1a.
We will show that x_1a^{-1}=a^{-1}x_1.
Consider that a^{-1}ax_1=a^{-1}x_1a
ex_1=a^{-1}x_1a
x_1=a^{-1}x_1a
x_1a^{-1}=a^{-1}x_1aa^{-1}
x_1a^{-1}= a^{-1}x_1e
x_1a^{-1}= a^{-1}x_1.
Thus, x_1 \in C(a^{-1}).
Hence C(a^{-1}) \subseteq C(a).
Let x_2 \in C(a^{-1}) s.t. a^{-1}x_2=x_2a^{_1}.
Consider that aa^{-1}x_2=ax_2a^{-1}
ex_2=ax_2a^{-1}
x_2=ax_2a^{-1}
x_2a=ax_2a^{-1}a
x_2a= ax_2e
x_2a= ax_2.
Thus, x_2 \in C(a).
Hence C(a) \subseteq C(a^{-1}).
Since C(a^{-1}) \subseteq C(a) and C(a) \subseteq C(a^{-1}), C(a) = C(a^{-1}).◻
Centralizer
Let G be a group and H be a subgroup of G then the Centralizer of H in G is C(H)=\{g \in G|gh=hg \; \forall \;h \in H\}.
Note that if H=\{e\} then C(H)=G.
Let G be a group and H be a subgroup of G then the Centralizer of H in G is C(H)=\{g \in G|gh=hg \; \forall \;h \in H\} is a subgroup of G.
- Proof:
-
Let G be a group and H be a subgroup of G. We will show that C(H) is a subgroup of G.
Let e be the identity element of G, then e \in C(H).
Let g_1,g_2 \in C(H).
We will show that g_1g_2^{-1}h=hg_1g_2^{-1}.
Consider that g_1h=hg_1, g_2h=hg_2, \forall h \in H.
Since g_1h=hg_1,
g_1hg_2^{-1}=hg_1g_2^{-1}
g_1g_2^{-1}h=hg_1g_2^{-1}.
Thus g_1g_2^{-1} \in C(H)
Hence C(H) \le G.
Conjugacy classes of a group G
Two elements x,y in a group G are conjugate if y=gxg^{-1} for some g\in G. This is an equivalence relation of G.
Conjugacy classes of G are subsets of G in which elements are conjugate to each other. That is, [x]=\{gxg^{-1}| g\in G \}, x \in G.
Normalizer
Let G be a group and H be a subgroup of G. For any x \in G, N(H)=xHx^{-1}=\{xhx^{-1}|h \in H\}.
This subgroup is called the Normalizer of H in the group G.
Let G be a group and H be a subgroup of G. Then
for any x \in G, N_x(H)=xHx^{-1}=\{xhx^{-1}|h \in H\} Gonjugates of G, and
the Normalizer of H in the group G, N(H)= \{ xHx^{-1} | x \in G\}.
Let G be a group and H be a subgroup of G. Then for each g \in G, N_g(H)=gHg^{-1} is a subgroup of G. These subgroups are called conjugates of H in G.
- Proof:
-
Let g \in G. Let e be the identity of H then geg^{-1} \in gHg^{-1}.
Consider geg^{-1}=(ge)g^{-1}=gg^{-1}=e. Thus e \in gHg^{-1}.
Let a,b \in gHg^{-1}.
We will show that ab^{-1} \in H.
Consider a=gh_1g^{-1} and b=gh_2g^{-1}, h_1,h_2 \in H.
Then ab^{-1}=(gh_1g^{-1})(gh_2g^{-1})^{-1}
=(gh_1g^{-1})((g^{-1})^{-1}h_2^{-1}g^{-1})
=gh_1g^{-1}gh_2^{-1}g^{-1}
=gh_1h_2^{-1}g^{-1} \in gHg^{-1}.
Thus since h_1, h_2^{-1} \in N_g(H) and e \in N_g(H), N_g(H) is a subgroup of G.◻