Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.3: Subgroups

( \newcommand{\kernel}{\mathrm{null}\,}\)

Subgroups are non-empty subsets of a group that are themselves groups. In this section, we will explore how to define and characterize subgroups.

Definition: Subgroup

Screen Shot 2023-06-29 at 1.48.28 PM.pngLet G be a group. Let H is a non empty subset of G and (H,) is a group, then H is a subgroup of G.  We write this as HG.

 Trivial subgroups of G are {e} and G (the group itself).

 

Note

To ensure a set is a group, we need to check for the following five conditions:

  1. Non-empty set,

  2. Closure, 

  3. Associativity,

  4. Identity, and

  5. inverse.

The following theorem allows us to check three conditions (rather than 5) to ensure a subset is a subgroup.

Example 2.3.1
  1.  The trivial subgroups of a group G are {e} and  G.
  2. (Z,+) is a subgroup of (R,+). In fact ZQR are subgroups of R under addition.
  3. But (Q,) is  not a subgroup of (R,+).  (why?)
Theorem 2.3.1

 

Let (G,) be a group then HG is a subgroup if and only if

The following conditions are satisfied:Screen Shot 2023-07-03 at 11.38.16 AM.png

 
  1. The identity eG is in H.

  2. If h1,h2H, then h1h2H.

  3. If hH then h1H.

 
Proof

Assume that HG.

We shall show that eH=eG, where eH is the identity of H and eH is the identity of G.

 

Thus, it is clear that HG.◻

  •  
    1. From (2), we have shown h1h2H,h1,h2H.

    2. From (1), we have shown the identity.

    3. From (3), we have shown the inverses exist.

    4. Every element of h1,h2,h3G therefore associativity applies because H inherits it from G by definition.

  •  

    Conversely, assume that HG satisfies 1, 2, and 3 shown in Theorem 1.

    From (1), we have shown that H is a non-empty set - it has at least an identity.

    Since eG is the identity of G and eHG, eGeH=eHeG=eH.

    Further, eHH,e1H=eHH.

    Since eH,e1HG, eHe1H=eG, but eHe1H=eH.  Screen Shot 2023-07-03 at 11.40.19 AM.png

    Hence eG=eH.◻

     

    Note: all subgroups of a group have a common element - the identity e. They could have more common elements. Since H is a subset of G, eH is in H by default.

    2. We shall show that, if h1,h2H, then h1h2H.

     

    Let h1,h2H.

    Since (H,) is a group, h1h2H.◻

    Note a group is closed by definition.

     

    3. We shall show that,if hH then h1H.

     

    Since (H,) is a group, h1H.◻

    Note each element in a group has an inverse by definition.

     

    HG iff:

    H{}.

    (H,) is a group.  Need to check:

    1. ,h1h2H,h1,h2H

    2. eH, where eG,

    3. h1H,hH,

    4. h1(h2h3)=(h1h2)h3,a,b,cH.

 

 

The following theorem allows us to check two conditions (rather than 5) to ensure a subset is a subgroup.

Theorem 2.3.2

 Let (G,) be a group.

Then H(G) is a subgroup of G iff the following conditions are satisfied:

  1.  eGH, and

  2.  gh1H,g,hH.

Proof:

Assume that HG.

Assume that HG.

 

Since eh2H,eh12H.

Further, eh12=h12H.

Since h1h2H, h1(h12)1H.

Therefore h1h2H. ◻

It has an identity since H{}.

See proof of (a) above

Associativity comes because h1,h2,h3H.

 
  1. Let h1,h2H.

 

Conversely, assume that HG satisfies (1) and (2) of Theorem 2.

We shall show HG.

H{}.  Since we have a group, we have at least an identity.

h1h2H,h1,h2H,

eH, where eG,

h1H,hH,

h1(h2h3)=(h1h2)h3,a,b,cH.

We shall show that gh1H,g,hH.

Then h1H because HG.

Since g,h1H, gh1H,

Hence the result.◻

HG iff:

H{}.

(H,) is a group.  Need to check:

We shall show that eH=eG, where eH is the identity of H and eH is the identity of G.

Since eG is the identity of G and eHG, eGeH=eHeG=eH.

Further, eHH,e1H=eHH.

Since eH,e1HG, eHe1H=eG, but eHe1H=eH.  

Hence eG=eH.◻

Let g,hH.

 

 

Example 2.3.2

Consider (R,).  Decide if the following sets form subgroups of R.

  1. H={xR|x=1 or x is irrational }.

No.

Counter example:

Consider 2H.

Further 22=2 but 2H 

Therefore since there is no closure, HR.◻

 
  1. K={xR|x1}.

No.

Counter example:

Consider 2K.

Note that 21=12, but 12K.

Thus the inverse of 2 does not exist.

Since a1aK, KR.◻

 

Example 2.3.3

 Let G=(M22(R),+).

Suppose you take this matrix s.t. the trace of the matrix is zero.

Thus H={[abcd]|a+d=0}.

 

Show that HG.

Solution:

Note that [0000] is the identity of G and it is clearly an element of H.  Thus condition (1) of Theorem 2 is satisfied.

 

We will show that gh1H,g,h1H.

Let [abcd],[efgh]H.

Then a+d=0 and e+h=0 since the two matrices belong to H.

Consider  [abcd]+[efgh]=[aebfcgdh].

Then (ae)+(dh)=(a+d)(e+h)=00=0.

Hence [aebfcgdh]H.

Thus HG.

Example 2.3.4

Let GL2(R)={A=[abcd]|a,b,c,dR,det where GL_2(\mathbb{R}) stands for General Linear Group that is a 2 \times 2 matrix and  SL_2(\mathbb{R})= \Big\{ A=\begin{bmatrix}a & b\\ c & d\end{bmatrix} \big| a,b,c,d \in \mathbb{R}, \det {(A)} =ad-bc = 1 \Big\}, where SL_2(\mathbb{R}). Show that SL_2( \mathbb{R}) \le GL_2\mathbb{R})

Example \PageIndex{5}

Let n be a nonnegative integer, Then  show that n\mathbb{Z}=\{nm|m\in \mathbb{Z}\} is a subgroup of (\mathbb{Z},+).

Answer

Add texts here. Do not delete this text first.

Definition: finite group

Let G be a group.  If G is finite and |G|=n then we say that the order of G=n.

 

Theorem \PageIndex{3}

Subgroup test for finite groups:

Let H \subseteq G.

Then H \le G iff:

  1. H \ne \{\}. (non-empty).

  2. a, b \in H then ab \in H (closed).

 

Example \PageIndex{6}

Find all subgroups of  Klein 4 (K_4) Group K_4=\{e, a, b, c\} such that a^2=b^2=c^2=e with the product of any two distinct non-identity elements is the third: ab = c, ac = b, and bc = a

Solution

Since K_4 is a finite Group, H_1=\{e,a\}, H_2=\{e,b\} and H_3=\{e,c\} are subgroups of K_4. Any subgroup of K_4 with more than 3 elements must contain two distinct non-identity elements. Therefore it must contain the third. Hence \{e\}, H_1=\{e,a\}, H_2=\{e,b\} and H_3=\{e,c\}, K_4 are subgroups of K_4.

Lattice Diagram of all subgroups

Example \PageIndex{7}: Lattice diagram of subgroups of K_4
clipboard_ec55024da3c0cca218b38d310264b15b2.png

 

Special subgroups 

Centralizer of  an element

Definition: Centralizer of an element

Let G be a group.  For any a \in G, the Centralizer of a in the group G C(a)=\{g \in G|ag=ga\}

 

Theorem \PageIndex{4}

Let G be a group.  For any a \in G, the Centralizer of a in the group G C(a)=\{g \in G|ag=ga\}. Then  C(a)\le G.

Proof

If C(a)=\{g \in G|ag=ga\}=G, then we are done. Otherwise, let x_1, x_2 \in C(a) .

We will show that x_1x_2^{-1} \in C(a) and e_G \in C(a) .

Consider \begin{align*} ax_1 &=x_1a\\ ax_1x_2^{-1} &=x_1ax_2^{-1} \\ ax_1x_2^{-1} &=x_1(ax_2^{-1}) \\ ax_1x_2^{-1}&=x_1(x_2^{-1}a) \\ax_1x_2^{-1} &=x_1x_2^{-1}a \end{align*} , x_1,x_2^{-1} \in C(a) .

Since x_2,x_2^{-1} \in C(a) , x_2x_2^{-1}=e , where e is the identity element, e in C(a) .

Since x_1x_2^{-1}, e \in C(a) , C(a) \le G .◻

Example \PageIndex{8}

Let G=GL(2,\mathbb{R}).  Then find

  1. C \Bigg( \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) .

  2. C \Bigg( \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg).

Solution:

Let \begin{bmatrix} a & b\\ c & d \end{bmatrix} \in G, Then a,b,c,d \in \mathbb{R} , and ad-bc \ne 0.

Consider C \Bigg( \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) means that \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}\begin{bmatrix}a & b\\ c & d \end{bmatrix}=\begin{bmatrix}a & b\\ c & d \end{bmatrix}\begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}.

Thus \begin{bmatrix}a+c & b+d\\ a & b \end{bmatrix}=\begin{bmatrix}a+b & a\\ c+d & c \end{bmatrix} .

Thus a+b=a+c, a=b+d, c+d=a and c=b.

Thus C\Bigg(\begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{A= \begin{bmatrix} a & b\\ b & a-b \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det(A) \ne 0 \; \Bigg\}

  1. C \Bigg( \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg).

Let \begin{bmatrix} a & b\\ c & d \end{bmatrix} \in G, Then a,b,c,d \in \mathbb{R} , and ad-bc \ne 0.

Consider C \Bigg( \begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix}\Bigg) means that \begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix}a & b\\ c & d \end{bmatrix}=\begin{bmatrix}a & b\\ c & d \end{bmatrix}\begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix}.

Thus \begin{bmatrix}c & d\\ a & b \end{bmatrix}=\begin{bmatrix}b & a\\ d & c \end{bmatrix} .

Thus b=c and d=a.

Thus C\Bigg(\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{B= \begin{bmatrix} a & b\\ b & a \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det(B) \ne 0 \; \Bigg\}

Center of a group

Definition: Center

Let G be a group. Then the center of G is defined as,   Z(G)=\{x \in G| gx=xg \forall \; g \in G \}.

Theorem \PageIndex{4}

 

Let (G, \ast ) be a group then Z(G) is a subgroup of G.

Proof:

Let G be a group and g \in G.

We will show that Z(G)=\{x \in G| gx=xg \; \forall g \in G \}.Screen Shot 2023-07-03 at 1.24.03 PM.png

 

Let e be the identity of G.

We will show that e \in Z(G).

Since eg=ge \; \forall g \in G, e \in Z(G).

 

Let x_1, x_2 \in Z(G).

We shall show that x_1x_2^{-1} \in Z(G).

Consider that x_2^{-1}g=gx_2^{-1}.

Further (x_1x_2^{-1})g=x_1gx_2^{-1}.Screen Shot 2023-07-03 at 1.25.40 PM.png

     =(x_1g)x_2^{-1}

     =(gx_1)x_2^{-1}

     =g(x_1x_2^{-1}).◻

 

Note

Note that if G is abelian, Z(G)=G.

 

Example \PageIndex{9}

Let G=GL(2,\mathbb{R}).  Then find \mathbb{Z}(G).

 Solution:

\mathbb{Z}(G)= \{ g \in G| gx=xg, \forall x \in G\}.

Let \begin{bmatrix} a & b c & d \end{bmatrix} \in G, Then a,b,c,d \in \mathbb{R} , and ad-bc \ne 0.

We have shown C\Bigg(\begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{ \begin{bmatrix} a & b\\ b & a-b \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det \ne 0 \; \Bigg\} and C\Bigg(\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\Bigg) =\Bigg\{ \begin{bmatrix} a & b b & a \end{bmatrix} \Bigg| a,b \in \mathbb{R}, \det \ne 0 \; \Bigg\}, \begin{bmatrix}1 & 1\\ 1 & 0 \end{bmatrix}, \begin{bmatrix}0 & 1\\ 1 & 0 \end{bmatrix} \in G.

Thus for \begin{bmatrix} a & b\\ c & d \end{bmatrix} to be in \mathbb{Z}(G), \begin{bmatrix} a & b\\ b & a-b \end{bmatrix} = \begin{bmatrix} a & b\\ b & a \end{bmatrix} .

Thus since a-b=a, b=0.

Thus, \mathbb{Z}(G) =\Bigg\{ \begin{bmatrix} a & 0\\ 0 & a \end{bmatrix} \Bigg| a \in \mathbb{R}, a \ne 0 \; \Bigg\}.

Example \PageIndex{10}

Prove that for each element a \in G, where G is a group, that C(a)=C(a^{-1}).

Proof:

Let x_1 \in C(a) s.t. ax_1=x_1a.

We will show that x_1a^{-1}=a^{-1}x_1.

Consider that a^{-1}ax_1=a^{-1}x_1a

     ex_1=a^{-1}x_1a

       x_1=a^{-1}x_1a

x_1a^{-1}=a^{-1}x_1aa^{-1}

x_1a^{-1}= a^{-1}x_1e

x_1a^{-1}= a^{-1}x_1.

Thus, x_1 \in C(a^{-1}).

Hence C(a^{-1}) \subseteq C(a).

Let x_2 \in C(a^{-1}) s.t. a^{-1}x_2=x_2a^{_1}.

Consider that aa^{-1}x_2=ax_2a^{-1}

     ex_2=ax_2a^{-1}

       x_2=ax_2a^{-1}

x_2a=ax_2a^{-1}a

x_2a= ax_2e

x_2a= ax_2.

Thus, x_2 \in C(a).

Hence C(a) \subseteq C(a^{-1}).
Since C(a^{-1}) \subseteq C(a) and C(a) \subseteq C(a^{-1}), C(a) = C(a^{-1}).◻

Centralizer

Definition: Centralizer

Let G be a group and H be a subgroup of G then  the Centralizer of H in G is  C(H)=\{g \in G|gh=hg \; \forall \;h \in H\}.

 Note that if H=\{e\} then C(H)=G.

Theorem \PageIndex{5}

Let G be a group and H be a subgroup of G then  the Centralizer of H in G is  C(H)=\{g \in G|gh=hg \; \forall \;h \in H\} is a subgroup of G.

Proof:

Let G be a group and H be a subgroup of G. We will show that C(H) is a subgroup of G.

Let e be the identity element of G, then e \in C(H).

Let g_1,g_2 \in C(H).

We will show that g_1g_2^{-1}h=hg_1g_2^{-1}.

Consider that g_1h=hg_1, g_2h=hg_2, \forall h \in H.

Since g_1h=hg_1,

    g_1hg_2^{-1}=hg_1g_2^{-1}

    g_1g_2^{-1}h=hg_1g_2^{-1}.

Thus g_1g_2^{-1} \in C(H)

Hence C(H) \le G.

Conjugacy classes of a group G 

Two elements x,y in a group G are conjugate if y=gxg^{-1} for some g\in G. This is an equivalence relation of G.

Conjugacy classes of G are subsets of G in which elements are conjugate to each other. That is, [x]=\{gxg^{-1}| g\in G \}x \in G.

 

Normalizer

Let G be a group and H be a subgroup of G.  For any x \in G, N(H)=xHx^{-1}=\{xhx^{-1}|h \in H\}.

This subgroup is called the Normalizer of H in the group G.

Definition: Normalizer

Let G be a group and H be a subgroup of G. Then 

for any x \in G, N_x(H)=xHx^{-1}=\{xhx^{-1}|h \in H\} Gonjugates of G, and 

the Normalizer of H in the group G, N(H)= \{ xHx^{-1} | x \in G\}.

Theorem \PageIndex{6}

Let G be a group and H be a subgroup of G. Then  for each g \in G, N_g(H)=gHg^{-1} is a subgroup of G. These subgroups are called conjugates of H in G.

Proof:

 Let g \in G. Let e be the identity of H then geg^{-1} \in gHg^{-1}.

Consider geg^{-1}=(ge)g^{-1}=gg^{-1}=e.  Thus e \in gHg^{-1}.Screen Shot 2023-07-03 at 1.40.22 PM.png

 

Let a,b \in gHg^{-1}.

We will show that ab^{-1} \in H.

Consider a=gh_1g^{-1} and b=gh_2g^{-1}, h_1,h_2 \in H.

Then ab^{-1}=(gh_1g^{-1})(gh_2g^{-1})^{-1}

     =(gh_1g^{-1})((g^{-1})^{-1}h_2^{-1}g^{-1})

     =gh_1g^{-1}gh_2^{-1}g^{-1}

     =gh_1h_2^{-1}g^{-1} \in gHg^{-1}.

Thus since h_1, h_2^{-1} \in N_g(H) and e \in N_g(H), N_g(H) is a subgroup of G.◻

 

 


This page titled 2.3: Subgroups is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

Support Center

How can we help?