2.4: Cyclic groups
( \newcommand{\kernel}{\mathrm{null}\,}\)
Order of group element
Let (G,⋆) be a group.
Let a∈G, then the order of an element a∈G, denoted by |a|, be the smallest positive integer n s.t. an=e. If no such n exists, we say that the order is infinite.
Consider the group Z10 with addition modulo 10. What is the order of its elements?
Consider Z10={0,1,2,3,4,5,6,7,8,9}. Note that {0} is the identity and its order is 1.
element |
Order |
Calculations |
0 |
|⟨0⟩|=1 |
|
1 |
|⟨1⟩|=10 |
1^{10}\equiv 0 \pmod{10} |
2 |
|\langle 2 \rangle |=5 |
2^{1}\equiv 2\pmod{10}, 2^2 \equiv 4 \pmod{10}, 2^{3}\equiv 6 \pmod{10}, 2^{4} \equiv 8 \pmod{10}, and 2^{5}\equiv 0 \pmod{10}. |
3 |
|\langle 3 \rangle |=10 |
3^1\equiv 3 \pmod{10}, 3^2\equiv 6 \pmod{10} , 3^3\equiv 9 \pmod{10}, 3^4\equiv 2 \pmod{10}, 3^5\equiv 5 \pmod{10}, 3^6\equiv 8 \pmod{10}, 3^7\equiv 1 \pmod{10}, 3^8\equiv 4 \pmod{10}, 3^9\equiv 7 \pmod{10}, and 3^{10}\equiv 0 \pmod{10}. |
4 |
|\langle 4 \rangle |=5 |
4^1 \equiv 4 \pmod{10}, 4^2 \equiv 8 \pmod{10}, 4^3 \equiv 2 \pmod{10}, 4^4 \equiv 6 \pmod{10}, and 4^5 \equiv 0 \pmod{10}. |
5 |
|\langle 5 \rangle |=2 |
5^1 \equiv 5 \pmod{10}, and 5^2 \equiv 0 \pmod{10}. |
6 |
|\langle 6 \rangle |=5 |
6^1 \equiv 6 \pmod{10}, 6^2 \equiv 2 \pmod{10}, 6^3 \equiv 8 \pmod{10}, 6^4 \equiv 4 \pmod{10} and 6^5 \equiv 0 \pmod{10}. |
7 |
|\langle 7 \rangle |=10 |
7^1 \equiv 7 \pmod{10}, 7^2 \equiv 4 \pmod{10}, 7^3 \equiv 1 \pmod{10}, 7^4 \equiv 8 \pmod{10}, 7^5 \equiv 5 \pmod{10}, 7^6 \equiv 2 \pmod{10}, 7^7 \equiv 9 \pmod{10}, 7^8 \equiv 6 \pmod{10}, 7^9 \equiv 3 \pmod{10}, and 7^{10} \equiv 0 \pmod{10}. |
8 |
|\langle 8 \rangle |=5 |
8^1 \equiv 8 \pmod{10}, 8^2 \equiv 6 \pmod{10}, 8^3 \equiv 4 \pmod{10}, 8^4 \equiv 2 \pmod{10}, and 8^5 \equiv 0 \pmod{10}. |
9 |
|\langle 9 \rangle |=10 |
9^1 \equiv 9 \pmod{10}, 9^2 \equiv 8 \pmod{10}, 9^3 \equiv 7 \pmod{10}, 9^4 \equiv 6 \pmod{10}, 9^5 \equiv 5 \pmod{10}, 9^6 \equiv 4 \pmod{10}, 9^7 \equiv 3 \pmod{10}, 9^8 \equiv 2 \pmod{10}, 9^9 \equiv 1 \pmod{10}, and 9^{10} \equiv 0 \pmod{10}. |
The order of a group is the number of elements in the group.
The order of an element a \in G, denoted by |a|, be the smallest positive integer n s.t. a^n=e.
Let (G,\star) be a group.
Let X=\{x_1, x_2 \dots, x_n\} where x_1, x_2 \dots, x_n \in G, then the subset of G generated by X denoted by \langle X \rangle is
\left\{x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n} \mid m_1, m_2 \cdots, m_n \in \mathbb{Z} \right\}.
Let (G,\star) be a group.
Let a \in G, then define the set generated by a denoted by \langle a \rangle is \{a^m|m\in \mathbb{Z}\}=\{\cdots, a^{-2}, a^{-1}, e, a, a^2, \cdots\}.
Note: a^0=e.
Let (G,\star) be a group.
Let a \in G, then \langle a \rangle is the smallest subgroup of G that contains a.
- Proof
-
Let (G,\star) be a group. Let a \in G. If a=e then \langle a \rangle =\{e\} is the smallest subgroup of G that contains e.
Suppose a \ne e. Clearly e \in \langle a \rangle. Let g,h \in \langle a \rangle. Then g=a^m for some m\in \mathbb{Z} and h=a^n for some n \in \mathbb{Z}.
Consider gh^{-1}=a^m \left(a^n\right)^{-1}=a^m a^{-n}=a^{m-n}. Since m-n \in \mathbb{Z}, gh^{-1} \in \langle a \rangle.
Thus, \langle a \rangle \leq G. Suppose H is a subgroup of G that contains a. Clearly, \langle a \rangle \leq H. \square
Let (G,\star) be a group.
Let a \in G, then \langle a \rangle is called cyclic subgroup of G.
If G=\langle a \rangle for some a \in G, then G is called a cyclic group.
Remember the definition of a unitary group:
Let n be a positive integer. Then define U(n)=\{a \in \mathbb{Z}_+| \gcd(a,n)=1\}. Then (U(n), \cdot \pmod n) is an abelian group. U(n) is a unitary group of order |\phi(n)| .
U(15)=\{1,2,4,7,8,11,13,14\} and \star= \cdot \pmod{15}.
Let a \in U(15) and b \in U(15).
Then a(x)+15(y)=1 and ab(x)+15by=b therefore U(15) is closed.
Since U(15) is a finite group, the order of the group is |U(15)|=8.
However, U(15) is not a cyclic group.
Proof: (by exhaustion)
Let a \in U(15).
We will show that \not \exists a \in U(15), s.t. | \langle a \rangle |=8.
|\langle1 \rangle |=1 since 1^1 \equiv 1 \pmod{15}
|\langle2 \rangle |=4 since 2^4 \equiv 1 \pmod{15}
|\langle4 \rangle |=2 since 4^2 \equiv 1 \pmod{15}
|\langle7 \rangle |=4 since 7^4 \equiv 1 \pmod{15}.
|\langle8 \rangle |=4 since 8^4 \equiv 1 \pmod{15}.
|\langle11 \rangle |=2 since 11^2 \equiv 1 \pmod{15}.
|\langle13 \rangle |=4 since 13^4 \equiv 1 \pmod{15}.
|\langle14 \rangle |=2 since 14^2 \equiv 1 \pmod{15}.
Since \not \exists a \in U(15), s.t. |\langle a \rangle |=8, U(15) is not a cyclic group.◻
Prove that (U(14),(\cdot \pmod{14})) is cyclic.
Proof:
We will show that \exists a \in U(14) s.t. |\langle a \rangle |=|U(14)|.
Consider U(14)=\{1,3,5,9,11,13\} where |U(14)|=6.
Consider 3^1\equiv 3 \pmod{14}, 3^2\equiv 9 \pmod{14}, 3^3 \equiv 13 \pmod{14}, 3^4\equiv 11 \pmod{14}, 3^5\equiv 5 \pmod{14} and 3^6 \equiv 1 \pmod{14}.
|\langle3 \rangle |=6 since 3^6 \equiv 1 \pmod{14}.
Thus |\langle3 \rangle |=6.
Therefore, U(14) is cyclic and 3 is a generator.◻
The following is an infinite cyclic group. Any infinite cyclic group is isomorphic to this group.
Is (\mathbb{Z},+) cyclic group? If so, what are the possible generators?
Yes, (\mathbb{Z},+) is a cyclic group that is generated by \pm 1.
Proof of being a cyclic group:
Since the group generated by 1 contains 1, the identity 0, and the inverse of 1, (-1), as well as all multiples of 1 and (-1), (\mathbb{Z},+) is cyclic.
Possible Generators:
Note 1^n is 1+1+\cdots+1 with n terms when n \rangle 0 and (-1)+(-1)+\cdots+(-1) with n terms when n is \langle0.
We shall show \mathbb{Z}=\langle1 \rangle =\langle-1 \rangle .
Consider that 1^n means 1+1+\cdots +1 with n terms and that 1^{-n} means +(-1)+(-1)+\cdots+(-1) with n terms.
It should be clear that 1^n will generate \mathbb{Z}_+ and that 1^{-n} will generate \mathbb{Z}_-. Note that 1^0 is interpreted as 0\cdot 1=0.
\langle1 \rangle =\{ \ldots, -3,-2,-1,0,1,2,3,\ldots \}.
Thus \langle1 \rangle is a generator of (\mathbb{Z},+).
Similarly, we will show that \langle-1 \rangle is a generator of (\mathbb{Z},+).
Consider that (-1)^n means +(-1)+(-1)+\cdots+(-1) with n terms and that 1^{-n} means 1+1+\cdots +1 with n terms.
It should be clear that 1^n will generate \mathbb{Z}_- and that 1^{-n} will generate \mathbb{Z}_+. \langle-1 \rangle =\{ \ldots, -3,-2,-1,0,1,2,3,\ldots \}.
Thus the generators of (\mathbb{Z},+) are \langle1 \rangle and \langle-1 \rangle .
Properties:
Cyclic groups are abelian.
- Proof:
-
Let (G,\star) be a group.
If G is cyclic, then G is abelian.
Assume that G is cyclic.
Then G=\langle g \rangle for some g \in G.
Let a,b \in G.
We will show ab=ba.
Then a=g^m and b=g^n, m,n \in \mathbb{Z}.
Consider \begin{align*} ab &=g^mg^n\\&=g^{m+n}\\&=g^{n+m}\\&=g^ng^m\\&=ba. \end{align*}
Hence, G is abelian.◻
The converse is not true. Specifically, if a group is abelian, it is not necessarily cyclic. A counterexample is (U(15), \bullet) since it is abelian but not cyclic.
Every subgroup of a cyclic group will be cyclic.
Let (G, \star) be a cyclic group. If H \le G, then H is a cyclic group.
- Proof
-
Let G=\langle g \rangle , \; g \in G.
We will show H=\langle g^k \rangle for some k \in \mathbb{Z}.
There are two cases to consider.
Case 1: H=\{e\}
Let H=\{e\}, then we are done since e \star e=e thus |H|=|\langle e \rangle |=1.
Case 2: H \ne \{e\}
Let H \ne \{e\}.
Thus \exists h \in H s.t. h \ne e.
Since h \in H, h \in G.
Hence h=g^m for some m \in \mathbb{Z}.
Without loss of generality, we may assume m \in \mathbb{N}.
Define S=\{n\in \mathbb{N}|g^n \in H\} \subseteq \mathbb{N}.
Since S(\ne \{\}) by the well ordering principle S has a smallest element k.
We shall show that H=\langle g^k \rangle .
Since g^k \in H, \langle g^k \rangle \le H.
Let h \in H.
We shall show that h \in \langle g^k \rangle .
Since h \in H, h=g^m, m \in \mathbb{Z}.
Since k,m \in \mathbb{Z}, by the division algorithm, there exists q,r s.t. m=qk+r, \; 0\le r<k.
Then g^m=g^{qk}g^r and g^{m-qk}=g^r.
Since g^m, g^{qk} \in H, then g^r \in H.
Since k is the smallest, r=0. (I think this is because g^0=e)
Therefore g^m=(g^k)^q \in \langle g^k \rangle .
Thus H \le \langle g^k \rangle .◻
The Converse is not true. Every sub-group of the Klein 4-group is cyclic, but not the group.
Subgroups of (\mathbb{Z}, +) are of the form (n\mathbb{Z},+), n\in \mathbb{N}.
Let G be a cyclic group s.t. G=\langle a \rangle and |G|=n.
Then a^k=e iff n|k.
- Proof
-
Let G=\langle a \rangle with a^n=e.
\langle a \rangle =\{e,a,a^2\ldots,a^{n-1}\}.
Let a^k=e, \; k \in \mathbb{Z}.
Since by the division algorithm, unique integers q and r exist such that k=nq+r, \; 0\le r< n, \; q,r \in \mathbb{Z}.
Consider a^r=a^{k-nq}
=a^k(a^n)^{-q} Note: a^k=e is our assumption & n is the order of group.
=ee^{-q}
=e.
Hence r=0.
Thus k=nq.
Therefore n|k.
Conversely, assume that n|k.
Then k=nm, m \in \mathbb{Z}.
a^k=a^{nm}.
=(a^n)^m
=e^m
=e.
Hence the result.◻
Consider the group \mathbb{Z}_{12} with addition modulo 12.
1. Is (\mathbb{Z}_{12} ,+ mod (12) ) cyclic group? If so, what are the possible generators? How many distinct generators are there? What can you say about the number of generators (hint: Euler totient number) and the possible generators (Hint: Divisors)?
3. Find all subgroups of \mathbb{Z}_{12} generated by each element. What are the orders of them? What can you say about these orders?
- Answer
-
1. Consider \mathbb{Z}_{12}=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} with addition modulo 12. Note that \{0\} is the identity and its order is 1.
Element
Order
Calculations
0
|\langle 0 \rangle |=1
1
|\langle 1 \rangle |=12
1^{12}\equiv 0 \pmod{12}
2
|\langle 2 \rangle |=6
2^{1}\equiv 2\pmod{12}, 2^2 \equiv 4 \pmod{12}, 2^{3}\equiv 6 \pmod{12}, 2^{4} \equiv 8 \pmod{12}, 2^{5}\equiv 10 \pmod{12} and 2^{6}\equiv 0 \pmod{12}.
3
|\langle 3 \rangle |=4
3^1\equiv 3 \pmod{12}, 3^2\equiv 6 \pmod{12} , 3^3\equiv 9 \pmod{12}, and 3^4\equiv 0 \pmod{12}.
4
|\langle 4 \rangle |=3
4^1 \equiv 4 \pmod{12}, 4^2 \equiv 8 \pmod{12}, and 4^3 \equiv 0 \pmod{12}.
5
|\langle 5 \rangle |=12
5^1 \equiv 5 \pmod{12}, 5^2 \equiv 10 \pmod{12}, 5^3 \equiv 3 \pmod{12}, 5^4\equiv 8 \pmod{12}, 5^5 \equiv 1 \pmod{12}, 5^6 \equiv 6 \pmod{12}, 5^7 \equiv 11 \pmod{12}, 5^8 \equiv 4 \pmod{12},5^9 \equiv 9 \pmod{12}, 5^{10} \equiv 2 \pmod{12}, 5^{11} \equiv 7 \pmod{12}, and 5^{12} \equiv 0 \pmod{12}.
6
|\langle 6 \rangle |=2 6^1 \equiv 6 \pmod{12}, and 6^2 \equiv 2 \pmod{12}.
7
|\langle 7 \rangle |=12
7^1 \equiv 7 \pmod{12}, 7^2 \equiv 2 \pmod{12}, 7^3 \equiv 9 \pmod{12}, 7^4 \equiv 4 \pmod{12}, 7^5 \equiv 11 \pmod{12}, 7^6 \equiv 6 \pmod{12}, 7^7 \equiv 1 \pmod{12}, 7^8 \equiv 8 \pmod{12}, 7^9 \equiv 3 \pmod{12}, 7^{10} \equiv 10 \pmod{12}, 7^{11} \equiv 5 \pmod{12}, and 7^{12} \equiv 0 \pmod{12}.
8
|\langle 8 \rangle |=3
8^1 \equiv 8 \pmod{12}, 8^2 \equiv 4 \pmod{12} and 8^3 \equiv 0 \pmod{12}.
9
|\langle 9 \rangle |=4
9^1 \equiv 9 \pmod{12}, 9^2 \equiv 6 \pmod{12}, 9^3 \equiv 3 \pmod{12} and 9^4 \equiv 0 \pmod{12}.
9^5 \equiv 5 \pmod{10}, 9^6 \equiv 4 \pmod{10}, 9^7 \equiv 3 \pmod{10}, 9^8 \equiv 2 \pmod{10}, 9^9 \equiv 1 \pmod{10}, and 9^{10} \equiv 0 \pmod{10}.
10 |\langle 10 \rangle |=6 10^1 \equiv 10 \pmod{12}, 10^2 \equiv 8 \pmod{12}, 10^3 \equiv 6 \pmod{12}, 10^4 \equiv 4 \pmod{12}, 10^5 \equiv 2 \pmod{12} and 10^6 \equiv 0 \pmod{12}.
11 |\langle 11 \rangle |=12 11^1 \equiv 11 \pmod{12}, 11^2 \equiv 10 \pmod{12}, 11^3 \equiv 9 \pmod{12}, 11^4 \equiv 8 \pmod{12}, 11^5 \equiv 7 \pmod{12}, 11^6 \equiv 6 \pmod{12}, 11^7 \equiv 5 \pmod{12}, 11^8 \equiv 4 \pmod{12}, 11^9 \equiv 3 \pmod{12}, 11^{10} \equiv 2 \pmod{12}, 11^{11} \equiv 1 \pmod{12}, and 11^{12} \equiv 0 \pmod{12}. From the table, (\mathbb{Z}_{12},+ mod (12) ) is a cyclic group, the set of all possible generators are \{1, 5, 7, 11\}=\{ a \in \mathbb{Z}| gcd(a,12)=1 ,\; 1 \leq a < 12 \} . Hence, the number of generators is the same as the number of integers relatively prime to 12=2^2\,3. That is, the number of generators is the Euler totient number \phi(12) =(2^2-2)(3^1-1)= 4 \;\; .
2. From the above table, we see that the orders of the subgroups are 1, 2, 3, 4, 6 and 12, which are all divisors of the order of \mathbb{Z}_{12}. Specifically, the order of the subgroup generated by g \in \mathbb{Z}_{12} is \dfrac{n}{ gcd(g, n)}.
Note that 12=2^2 \, 3. Then the cyclic subgroups are \langle 1 \rangle , \langle 6 \rangle , \langle 4 \rangle , \langle 3 \rangle , \langle 2 \rangle , \langle 0 \rangle with orders 12, 2, 3, 4, 6 and 1.
\langle a^k \rangle =\langle a^{\gcd(n,k)} \rangle
Let G=\langle a \rangle be a cyclic group with |G|=n.
Let b \in G.
If b=a^k then |b|=\frac{n}{d}, \; d=\gcd(k,n).
- Answer
-
Let G=\langle a \rangle with |G|=n and a \in G.
Let a^n=e.
We will show that \langle a^k \rangle =\langle a^{\gcd{(n,k)}} \rangle .
Let x \in \langle a^k \rangle .
Since \gcd(n,k)=d for some d \in \mathbb{Z}_+, d|n and d|k.
Thus, k=md, m\in \mathbb{Z}.
Consider an arbitrary power of a^k, (a^k)^j \in \langle a^k \rangle .
(a^k)^j = (a^{md})^j=(a^d)^{jm} \in \langle a^d \rangle \in \langle a^{\gcd{(n,k)}} \rangle .
Let d=xn+yk, \; n,k \in \mathbb{Z}.
Using the division algorithm, (a^{xn+yk})^h= (a^n)^{xh} (a^k)^{yh}, \;n,k,h \in \mathbb{Z}
=(a^k)^{yh} \in \langle a^k \rangle .
Thus a^k = a^d.
Now we want to show |a^k|=\frac{n}{d}.
Consider (a^k)^{\frac{n}{d}}=(a^n)^{\frac{k}{d}}=e^{\frac{k}{d}}=e.
Thus |a^k|\le \frac{n}{d}.
Now consider (a^d)^{\frac{n}{d}}=(a^n)=e \; \Rightarrow \; |a^d| \le \frac{n}{d}.
Now consider 0 \le i <\frac{n}{d}.
Thus di< n, where d is positive since it is the greatest common denominator.
Thus (a^d)^i=a^{di}\ne e for di<n.
Then we can show |a^d|=\frac{n}{d}.
Consider |a^k|=|\langle a^k \rangle |=|\langle a^d \rangle |=|a^d|= \frac{n}{d}.
Hence |a^k|=\frac{n}{d}.
Let G=\langle g \rangle be a cyclic group with |g|=n. Then G=\langle g^k \rangle if and only if gcd(k,n)=1.
- Proof
-
Let G=\langle g \rangle be a cyclic group with |g|=n. Then
g \in G and g^n=e.Assume that G = \langle g^k \rangle . Then g = (g^k)^ x for some x \in \mathbb{Z} .
Thus,
g^{1 - kx} = e.
By Theorem 2.4.5, n \mid (1 - kx) . Therefore,
1 - kx = ny, for some y \in \mathbb{Z}.
Which implies,
1 = kx + ny,
hence,
\gcd(k, n) = 1.Conversly, we shall show that if \gcd(k, n) = 1 , then G = \langle g^k \rangle .
Suppose that \gcd(k, n) = 1 . Then
kx + ny = 1, for some x, y \in \mathbb{Z}.
By using the properties of powers in a group and g^n=e, we get,
g^1 = g^{kx + ny}=(g^k)^x (g^n)^y=(g^k)^x.Hence g \in \langle g^k \rangle .
Therefore, we have G \subseteq \langle g^k \rangle . Since \langle g^k \rangle \ \subseteq G,
G = \langle g^k \rangle.
Let G=\langle a \rangle be a cyclic group with |G|=n. Prove the following statements:
a) If H\leq G then H=\langle a^k \rangle for some integer k that divides n.
b) If k|n then \langle a^{\frac{n}{k}} \rangle is the unique subgroup of G of order k.
- Proof
-
a) Let G = \langle a \rangle with |G| = n. Assume that H\leq G. By Theorem 2.4.3, H is cyclic. Hence H=\langle a^k \rangle for some integer k \in \textbf{Z}. Let d=gcd(k,n). We shall show that H=\langle a^d \rangle. Since d=gcd(k,n), kx + ny = d, for some x, y \in \mathbb{Z}. Consider, a^d = a^{kx + ny}=(a^k)^x (a^n)^y=(a^k)^x. Thus a^d \in H. Therefore \langle a^d \rangle \subseteq H.
Since d|k, k=md, for some m\in \mathbb{Z}. Thus, a^k=a^{md}=\left(a^d\right)^m. Hence H \subseteq \langle a^d \rangle . Thus H =\langle a^d \rangle and d|n.b) Let G = \langle a \rangle with |G| = n. Assume that k|n. Suppose K be subgroup of G of order k. We shall show that K=\langle a^{\frac{n}{k}} \rangle. Since K is a subgroup of G, K=\langle a^m \rangle, for some, m \in \mathbb{Z}. By part a, m|n. Then \left(a^m\right)^{n/m}=e. We shall show that \dfrac{n}{m} is the smallest positive integer with this property.
Now, |K|= \dfrac{n}{m}=k. Thus, m=\dfrac{n}{k}. Thus K= \langle a^\frac{n}{k} \rangle which is unique.
A group of prime order is cyclic.
- Proof
-
Let G be a group s.t. |G|=p, where p is a prime number.
Let g \in G s.t. H=\langle g \rangle is a subgroup of G.Since p > 1, g \ne \{e\}.
Since H is cyclic, \exists \; g^k=e, for some k \in \mathbb{Z}.
By the division algorithm, k=nq+r where 0 \le r < n.
Hence, e=g^k=g^{nq+r}=g^{nq}g^r=eg^r=g^r.
Since the smallest positive integer k such that g^k=e is n, r=0. Thus n|k.
Conversely, if n|k, then k=nm, m \in \mathbb{Z}.
Consequently, g^k=g^{nm}=(g^n)^m=e^m=e.
Thus, |\langle g \rangle | divides |G|.
Consider that the only two divisors of a prime number are the prime number itself and 1.
Since p < 1, |G|=p.
Since |G|=p, G is cyclic.◻
List all the cyclic subgroups of U(30).
U(30)=\{1,7,11,13,17,19,23,29\} and |U(30)|=8.
k |
Calculations |
|k| |
7 |
7^1 \equiv 7 \pmod{30}, 7^2 \equiv 19 \pmod{30}, 7^3 \equiv 13 \pmod{30}, 7^4 \equiv 1 \pmod{30} |
4 |
11 |
11^1 \equiv 11 \pmod{30}, 11^2 \equiv 1 \pmod{30} |
2 |
13 |
13^1 \equiv 13 \pmod{30}, 13^2 \equiv 19 \pmod{30}, 13^3 \equiv 7 \pmod{30}, 13^4 \equiv 1 \pmod{30} |
4 |
17 |
17^1 \equiv 17 \pmod{30}, 17^2 \equiv 19 \pmod{30}, 17^3 \equiv 23 \pmod{30}, 17^4 \equiv 1 \pmod{30} |
4 |
19 |
19^1 \equiv 19 \pmod{30}, 19^2 \equiv 1 \pmod{30} |
2 |
23 |
23^1 \equiv 23 \pmod{30}, 23^2 \equiv 19 \pmod{30}, 23^3 \equiv 17 \pmod{30}, 23^4 \equiv 1 \pmod{30} |
4 |
29 |
29^1 \equiv 29 \pmod{30}, 29^2 \equiv 1 \pmod{30} |
2 |
Since \not \exists a \in U(30) s.t. |\langle a \rangle |=|U(30)|=8, U(30) is not a cyclic group.
However the following subgroups of U(30) are cyclic: \{1,7,13,19\}, \{1,17,19,23\}, \{1,11\}, \{1,19\} , \{1,29\} and \{1\}.
Let n \geq 1. Then U(n) is cyclic iff n=1, 2, 4, p^k or 2p^k where p is an odd prime and k \geq 1.
U(n) is not cyclic if n is divisible by two distinct odd primes or by 4 and an odd prime.
U(1), U(2), U(3), U(4), U(5), U(6), U(7), U(9), U(10), U(11), U(18), U(27) are cyclic.
U(8), U(16), U(20), U(30) are not cyclic.