Skip to main content
Mathematics LibreTexts

2E: Exercises

  • Page ID
    131663
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Exercise \(\PageIndex{1}\)

    Check the following structures for the group properties:

    1. \(\mathbb{Z}_4 \) under addition.

    2. \(\mathbb{Z}_5^* \) under multiplication.

    3. \( \mathbb{Z}_8^* \) under multiplication.

    4. \(\{ \pm 1, \pm i\} \) under multiplication.

    5. Rotations that map a brick to itself.

    6. The four functions \(f(x)=x, g(x)=-x, h(x)= \dfrac{1}{x}, j(x)= \dfrac{-1}{x}\) under composition.

    7. The four matrices \( \begin{bmatrix}
      1 & 0 \\
      0 & 1
      \end{bmatrix}, 
      \begin{bmatrix}
      -1 & 0 \\
      0 & -1
      \end{bmatrix},
      \begin{bmatrix}
      1 & 0 \\
      0 & -1
      \end{bmatrix},
      \begin{bmatrix}
      -1 & 0 \\
      0 & 1
      \end{bmatrix}
      \) under multiplication.

    Answer

    5. If \(a,b,c\) denote rotations about three mutually perpendicular axes, then \(a^2=b^2=c^2=e\) the identity rotation. Also \(ab=c,ac=b,bc=a\) Thus this group is isomorphic to \(K_4.\)

    Exercise \(\PageIndex{2}\)

    Let \(H(C) =\left\{ \begin{bmatrix}1 & a & b\\
    0 & 1 & c \\
    0 & 0 & 1 \end{bmatrix}\Big| \ a,b,c, \in \mathbb{C}\right\}\).

    Show that \(H(\mathbb{C})\) is a group under matrix multiplication.  Demonstrate explicitly that \(H(\mathbb{C})\) is always non-abelian.

    Exercise \(\PageIndex{3}\)

    Let \(S = \mathbb{R} \backslash \{-1\}\) and define a binary operation \(\oplus\) on \(S\) by \(a \oplus b = a+b+ab\).  Prove that \((S, \oplus)\) is an abelian group.

    Exercise \(\PageIndex{4}\)

    Given the groups \(\mathbb{R}^*\) and \(\mathbb{Z}\), let \(G = \mathbb{R}^* \times \mathbb{Z}\).  Define a binary operation \(\star\) by \((a,m) \star (b, n) = (ab,m + n)\). Show that \( (G, \star)\) is a group under this operation.

    Exercise \(\PageIndex{5}\)

    Let \(G\) be a group.  Show that if \(a^2 = e\), for all elements of \(a \in G\), then \(G\) must be abelian.

    Exercise \(\PageIndex{6}\)

    Let \(H\) consists of \(2 \times 2\) matrices of the form \(\begin{bmatrix} \cos{(x)} & -\sin{(x)}\\
    \sin{(x)} & \cos{(x)} \end{bmatrix}\), where \(x \in \mathbb{R}\). Prove that \(H\) is a subgroup of \(SL_2(\mathbb{R})\).

    Exercise \(\PageIndex{7}\)

    Prove or disprove the following statements: Let \(H\) and \(K\) be subgroups of a group \(G\).

    1. \(H \cup K\) is a subgroup of \(G\).

    2. \(H \cap K\) is a subgroup of \(G\).

     

    Exercise \(\PageIndex{8}\)

    Prove that for each element \(a \in G\), where \(G\) is a group, the centralizer of \(a\), \(C(a)\) is a subgroup of \(G\). Prove that for each element \(a \in G\), where \(G\) is a group, that \(C(a)=C(a^{-1})\).

    Exercise \(\PageIndex{9}\)

    Let \(G=GL(2,\mathbb{R})\).  Then find

    1. \(C \Bigg(\begin{bmatrix}1 & 1\\
      1 & 0 \end{bmatrix}\Bigg)\).

    2. \(C \Bigg( \begin{bmatrix} 0 & 1\\
      1 & 0 \end{bmatrix}\Bigg)\).

    3. \(\mathbb{Z}(G)\).

    Exercise \(\PageIndex{10}\)

    Let \(G\) be a group. \(H=\{g^2: g\in G\}. \)

    1. Prove or disprove: If \(G\) is abelian then  \(H\) is a subgroup.

    2. Prove or disprove:  If \(H\) is a subgroup then \(G\) is abelian.

    Exercise \(\PageIndex{11}\)

    List the cyclic subgroups of \(U(30)=\{1,7,11,13,17,19,23,29\} \).

    Exercise \(\PageIndex{12}\)

    Show that \(U(20)\ne <k> \) for any \(k \) in \(U(20) \).  [Hence, \(U(20) \) is not cyclic.]

    Exercise \(\PageIndex{13}\)

    Decide whether \(U(10) \) is cyclic or not. Justify your answer.

    Exercise \(\PageIndex{14}\)

    Is \((\mathbb{Z},+) \) cyclic group?  If so, what are the possible generators?

    Exercise \(\PageIndex{15}\)

    Decide whether the following \(H\) is a subgroup of \(G.\) Justify your answer.

    1. \(H=\mathbb{N}, G=\mathbb{Z}\)
    2. \(H=\{1,3\}, G=\mathbb{Z}^*_{10}\)
    3. \(H=\{1,3\}, G=\mathbb{Z}^*_{15}\)
    4. \(H=\{ \left. (n,m) \in \mathbb{Z}\times \mathbb{Z}  \right| \,\, 2\mid (n+m) \}, G=\mathbb{Z}\times \mathbb{Z}\)
    Exercise \(\PageIndex{16}\)

    Prove or disprove: If \(K\) is a subgroup of \(H\) and \(H\) is a subgroup of \(G\) then \(K\) is a subgroup of \(G\).

     


    This page titled 2E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?