Assignment 4
( \newcommand{\kernel}{\mathrm{null}\,}\)
Some of these solutions are written by Fall 2024 MATH 2101 students.
Consider the group Z12 with addition modulo 12.
1. Is (Z12,+mod(12)) cyclic group? If so, what are the possible generators? How many distinct generators are there? What can you say about the number of generators (hint: Euler totient number) and the possible generators (Hint: Divisors)?
2. Let G=⟨g⟩ be a cyclic group with |g|=n. Then G=⟨gk⟩ if and only if gcd(k,n)=1.
3. Find all subgroups of Z12 generated by each element. What are the orders of them? What can you say about these orders?
4. Let G=⟨a⟩ be a cyclic group with |G|=n. Prove the following statements:
a) If H≤G then H=⟨ak⟩ for some integer k that divides n.
b) If k|n then ⟨ank⟩ is the unique subgroup of G of order k.
- Answer
-
Consider Z12={0,1,2,3,4,5,6,7,8,9,10,11} with addition modulo 12. Note that {0} is the identity and its order is 1.
Element
Order
Calculations
0
|⟨0⟩|=1
1
|⟨1⟩|=12
112≡0(mod12)
2
|⟨2⟩|=6
21≡2(mod12), 22≡4(mod12), 23≡6(mod12), 24≡8(mod12), 25≡10(mod12) and 26≡0(mod12).
3
|⟨3⟩|=4
31≡3(mod12), 32≡6(mod12) , 33≡9(mod12), and 34≡0(mod12).
4
|⟨4⟩|=3
41≡4(mod12), 42≡8(mod12), and 43≡0(mod12).
5
|⟨5⟩|=12
51≡5(mod12), 52≡10(mod12), 53≡3(mod12), 54≡8(mod12), 55≡1(mod12), 56≡6(mod12), 57≡11(mod12), 58≡4(mod12),59≡9(mod12), 510≡2(mod12), 511≡7(mod12), and 512≡0(mod12).
6
|⟨6⟩|=2 61≡6(mod12), and 62≡2(mod12).
7
|⟨7⟩|=12
71≡7(mod12), 72≡2(mod12), 73≡9(mod12), 74≡4(mod12), 75≡11(mod12), 76≡6(mod12), 77≡1(mod12), 78≡8(mod12), 79≡3(mod12), 710≡10(mod12), 711≡5(mod12), and 712≡0(mod12).
8
|⟨8⟩|=3
81≡8(mod12), 82≡4(mod12) and 83≡0(mod12).
9
|⟨9⟩|=4
91≡9(mod12), 92≡6(mod12), 93≡3(mod12) and 94≡0(mod12).
95≡5(mod10), 96≡4(mod10), 97≡3(mod10), 98≡2(mod10), 99≡1(mod10), and 910≡0(mod10).
10 |⟨10⟩|=6 101≡10(mod12), 102≡8(mod12), 103≡6(mod12), 104≡4(mod12), 105≡2(mod12) and 106≡0(mod12).
11 |⟨11⟩|=12 111≡11(mod12), 112≡10(mod12), 113≡9(mod12), 114≡8(mod12), 115≡7(mod12), 116≡6(mod12), 117≡5(mod12), 118≡4(mod12), 119≡3(mod12), 1110≡2(mod12), 1111≡1(mod12), and 1112≡0(mod12). From the table, (Z12,+mod(12)) is a cyclic group, the set of all possible generators are {1,5,7,11}={a∈Z|gcd(a,12)=1,1≤a<12}. Hence, the number of generators is the same as the number of integers relatively prime to 12=223. That is, the number of generators is the Euler totient number ϕ(12)=(22−2)(31−1)=4.
- Answer
-
Let G=⟨g⟩ be a cyclic group with |g|=n. Then
g∈G and gn=e.Assume that G=⟨gk⟩. Then g=(gk)x for some x∈Z.
Thus,
g1−kx=e.
By Theorem 2.4.5 from the text, n∣(1−kx). Therefore,
1−kx=ny, for some y∈Z.
Which implies,
1=kx+ny,
hence,
gcdConversly, we shall show that if \gcd(k, n) = 1 , then G = \langle g^k \rangle .
Suppose that \gcd(k, n) = 1 . Then
kx + ny = 1, for some x, y \in \mathbb{Z}.
By using the properties of powers in a group and g^n=e, we get,
g^1 = g^{kx + ny}=(g^k)^x (g^n)^y=(g^k)^x.Hence g \in \langle g^k \rangle .
Therefore, we have G \subseteq \langle g^k \rangle . Since \langle g^k \rangle \ \subseteq G,
G = \langle g^k \rangle. - Answer
-
From the above table, we see that the orders of the subgroups are 1, 2, 3, 4, 6 and 12, which are all divisors of the order of \mathbb{Z}_{12}. Specifically, the order of the subgroup generated by g \in \mathbb{Z}_{12} is \dfrac{n}{ gcd(g, n)}.
- Answer
-
a) Let G = \langle a \rangle with |G| = n. Assume that H\leq G. By Theorem 2.4.3, H is cyclic. Hence H=\langle a^k \rangle for some integer k \in \textbf{Z}. Let d=gcd(k,n). We shall show that H=\langle a^d \rangle. Since d=gcd(k,n), kx + ny = d, for some x, y \in \mathbb{Z}. Consider, a^d = a^{kx + ny}=(a^k)^x (a^n)^y=(a^k)^x. Thus a^d \in H. Therefore \langle a^d \rangle \subseteq H.
Since d|k, k=md, for some m\in \mathbb{Z}. Thus, a^k=a^{md}=\left(a^d\right)^m. Hence H \subseteq \langle a^d \rangle . Thus H =\langle a^d \rangle and d|n.b) Let G = \langle a \rangle with |G| = n. Assume that k|n. Suppose K be subgroup of G of order k. We shall show that K=\langle a^{\frac{n}{k}} \rangle. Since K is a subgroup of G, K=\langle a^m \rangle, for some, m \in \mathbb{Z}. By part a, m|n. Then \left(a^m\right)^{n/m}=e. We shall show that \dfrac{n}{m} is the smallest positive integer with this property.
Now, |K|= \dfrac{n}{m}=k. Thus, m=\dfrac{n}{k}. Thus K= \langle a^\frac{n}{k} \rangle which is unique.
Let G be a group.
1. Show that |g|=|g^{-1}|, for all g\in G.
2. Show that |h|=|ghg^{-1}|, for all g,h\in G.
3. Show that |hg|=|gh|, for all g,h\in G.
- Answer
-
Let G be a group.
1. Suppose g \in G , then let n \in \mathbb{Z} such that |g| = n . Now consider:
\begin{eqnarray} g^n &=& e, \nonumber \\ \iff \left(g^n\right)^{-1} &=& e^{-1}, \nonumber \\ \iff (g^{-1})^n &=& e. \nonumber \end{eqnarray}
Now suppose k \in \mathbb{Z} such that |g^{-1}| = k . Since (g^{-1})^n = e , it must be true that k \leq n .
Now consider:
\begin{eqnarray} (g^{-1})^k &=& e, \nonumber \\ \iff (g^{-1})^{-k} &=& e^{-1}, \nonumber \\ \iff g^k &=& e. \nonumber \end{eqnarray}
Since g^k = e and |g| = n , it must be the case that n \leq k .
Therefore n \leq k \leq n \implies n = k .
Therefore |g| = |g^{-1}| .2. Suppose h \in G , the let n \in \mathbb{Z} such that |h| = n . Now consider:
\begin{eqnarray} (ghg^{-1})^n &=& (ghg^{-1})(ghg^{-1}) \dots (ghg^{-1}) \nonumber \\ &=& gh(g^{-1}g)h(g^{-1}g)h \dots (g^{-1}g)hg^{-1} \nonumber \\ &=& gh^ng^{-1} \nonumber \\ &=& geg^{-1} \nonumber \\ &=& gg^{-1} \nonumber \\ &=& e. \nonumber \end{eqnarray}
Now let k \in \mathbb{Z} such that |ghg^{-1}| = k . Since (ghg^{-1})^n = e , it must be the case that k \leq n . Now consider:
\begin{eqnarray} (ghg^{-1})^k &=& e, \nonumber \\ \iff (ghg^{-1})(ghg^{-1})\dots(ghg^{-1}) &=& e, \nonumber \\ \iff gh(g^{-1}g)h(g^{-1}g)\dots (g^{-1}g)hg^{-1} &=& e, \nonumber \\ \iff gh^kg^{-1} &=& e, \nonumber \\ \iff g^{-1}g h^k g^{-1}g &=& g^{-1}eg, \nonumber \\ \iff e h^k e &=& g^{-1}g, \nonumber \\ \iff h^k &=& e. \nonumber \end{eqnarray}
Since h^k = e and |h| = n , then n \leq k .
Therefore k \leq n \leq k \implies n = k .
Therefore |h| = |ghg^{-1}| .3. Suppose g,h \in G . Let n \in \mathbb{Z} such that |hg| = n . Now consider:
\begin{eqnarray} (hg)^n &=& e, \nonumber \\ \iff (hg)(hg)\dots(hg)(hg) &=& e, \nonumber \\ \iff h(gh)(gh) \dots (gh)g &=& e, \nonumber \\ \iff h(gh)^{n-1}g &=& e, \nonumber \\ \iff h^{-1}h(gh)^{n-1}gh &=& h^{-1}eh, \nonumber \\ \iff e (gh)^n &=& h^{-1}h, \nonumber \\ \iff (gh)^n &=& e. \nonumber \end{eqnarray}
Now let k \in \mathbb{Z} such that |gh| = k . Since (gh)^n = e , it must be the case that k \leq n . Now consider:
\begin{eqnarray} (gh)^k &=& e, \nonumber \\ \iff (gh)(gh)\dots(gh)(gh) &=& e, \nonumber \\ \iff g(hg)(hg) \dots (hg)h &=& e, \nonumber \\ \iff g(hg)^{k-1}h &=& e, \nonumber \\ \iff g^{-1}g(hg)^{k-1}hg &=& g^{-1}eg, \nonumber \\ \iff e (hg)^k &=& g^{-1}g, \nonumber \\ \iff (hg)^k &=& e. \nonumber \end{eqnarray}
Since (hg)^k = e and |hg| = n , then it must be the case that n \leq k .
Therefore n \leq k \leq n \implies n = k .
Therefore |hg| = |gh| .
Let G be a group.
1. If G is an abelian group then show that H=\{g^2|g\in G\} is a subgroup of G. Show that H is not necessarily a subgroup if G is not abelian by taking G=A_4.
2. If a^2=e, for all a \in G, show that G is abelian. Give an example to show that the converse of the above statement is not true.
- Answer
-
1.To show that H is a subgroup of G when G is abelian, we use the subgroup criterion:
Since e \in G and e^2 = e , e \in H . Let a,b \in H. Then a=g_1^2, b=g_2^2 for some g_1,g_2 \in G .
Consider, ab^{-1}=g_1^2 \left(g_2^2 \right)^{-1} = g_1^2 \left(g_2^{-1} \right)^{2} = g_1(g_1g_2^{-1})g_2^{-1}= g_1(g_2^{-1}g_1)g_2^{-1} \quad \text{(since \(G \) is abelian)}. Thus ab^{-1} =\left( g_1g_2^{-1}\right)^2. Since g_1g_2\in G, \left( g_1g_2^{-1}\right)^2 \in H.
Therefore, H is a subgroup of G when G is abelian.
Consider G = A_{4} , we will show that H is not a subgroup of G .
\begin{align*} ( \ 1 \ 2 \ 3 \ )^{2} = ( \ 1 \ 3 \ 2 \ ) &= ( \ 3 \ 2 \ 1 \ ) \\ ( \ 1 \ 2 \ 4 \ )^{2} = ( \ 1 \ 4 \ 2 \ ) &= ( \ 4 \ 2 \ 1 \ ) \\ ( \ 1 \ 3 \ 4 \ )^{2} = ( \ 1 \ 4 \ 3 \ ) &= ( \ 4 \ 3 \ 1 \ ) \\ ( \ 2 \ 3 \ 4 \ )^{2} = ( \ 2 \ 4 \ 3 \ ) &= ( \ 4 \ 3 \ 2 \ ) \\ ( \ 4 \ 3 \ 2 \ )^{2} = ( \ 4 \ 2 \ 3 \ ) &= ( \ 2 \ 3 \ 4 \ ) \\ ( \ 4 \ 3 \ 1 \ )^{2} = ( \ 4 \ 1 \ 3 \ ) &= ( \ 1 \ 3 \ 4 \ ) \\ ( \ 4 \ 2 \ 1 \ )^{2} = ( \ 4 \ 1 \ 2 \ ) &= ( \ 1 \ 2 \ 4 \ ) \\ ( \ 3 \ 2 \ 1 \ )^{2} = ( \ 3 \ 1 \ 2 \ ) &= ( \ 1 \ 2 \ 3 \ ) \\ ( \ 1 \ 2 \ )( \ 3 \ 4 \ )( \ 1 \ 2 \ )( \ 3 \ 4 \ ) &= e \\ ( \ 1 \ 3 \ )( \ 2 \ 4 \ )( \ 1 \ 3 \ )( \ 2 \ 4 \ ) &= e \\ ( \ 1 \ 4 \ )( \ 2 \ 3 \ )( \ 1 \ 4 \ )( \ 2 \ 3 \ ) &= e \end{align*}
\begin{align*} H &= \Bigl\{ \ e, \ ( \ 1 \ 2 \ 3 \ ), \ ( \ 1 \ 2 \ 4 \ ), \ ( \ 1 \ 3 \ 4 \ ), \ ( \ 2 \ 3 \ 4 \ ), \ ( \ 4 \ 3 \ 2 \ ), \ ( \ 4 \ 3 \ 1 \ ), \ ( \ 4 \ 2 \ 1 \ ), \ ( \ 3 \ 2 \ 1 \ ) \ \Bigr\} \end{align*}
We can see that H \subseteq G , we will show that H is not closed. We know that ( \ 1 \ 2 \ 3 \ ) \in H and ( \ 1 \ 2 \ 4 \ ) \in H . Consider
\begin{align*} ( \ 1 \ 2 \ 3 \ )( \ 1 \ 2 \ 4 \ ) &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 4 \\ 3 & 4 & 2 \end{pmatrix} \\ &= ( \ 1 \ 3 \ )( \ 2 \ 4 \ ) \notin H \end{align*}
\therefore \ H \nleq G .2. The statement is false. Answers may vary.
Consider the quaternion group Q_8 , which is non-abelian and defined by:
Q_8 = \{ \pm 1, \pm i, \pm j, \pm k \}
with multiplication rules:
i^2 = j^2 = k^2 = -1, \qquad ij = k, \qquad ji = -k
Consider
\begin{align*} (\pm 1)^2 &= 1, \\ (\pm i)^2 = (\pm j)^2 = (\pm k)^2 &= -1 \end{align*}
Then
\begin{align*} H = \bigl\{ 1, -1 \bigr\} \end{align*}Clearly, H is a subgroup of Q_8. (You can use a Cayley table to show this!)
Now we will show that Q_8 is non-abelian. consider i, j, k \in Q_8
\begin{align*} i \cdot j &= k, \\ j \cdot i &= -k \\ k &\neq -k \\ \iff i \cdot j &\neq j \cdot i \end{align*}
\therefore the existence of H = \{ g^2 \mid g \in G \} as a subgroup of G does not imply that G is abelian.2.
Assume that a^2 = e for all a \in G . Let a, b \in G . Consider the product a b . By using the properties of an abelian group, we have
\begin{align*} (a b)^2 &= (a b) (a b) \\ &= a(b a) b \\ &= a (a b) b \\ &= (a a) (b b) \\ &= a^{2} \cdot b^{2} \\ &= e \cdot e \\ &= e \end{align*}
Since (a b)^2 = e , we have:
(a b)^2 = e \implies a b a b = e.
Multiply both sides on the left by a and on the right by b :
a (a b a b) b = a e b \implies (a a) b a b b = a b.
Simplify using a^2 = e and b^2 = e :
e \cdot b a \cdot e = a b \implies b a = a b.
Hence, a b = b a , \ \therefore \ G is abelian.
Showing the converse is false:
Consider the cyclic group \mathbb{Z}_4 = \{ 0, 1, 2, 3 \} under +(\text{mod} 4) . \mathbb{Z}_4 is abelian, but not all elements satisfy a^2 = e .
Consider 1^2 \in \mathbb{Z}_4.
\begin{align*} 1 + 1 &= 2 \\ &\neq 0 \end{align*}Thus, \mathbb{Z}_4 is abelian, but a^2 = e does not hold for all a \in \mathbb{Z}_4 . This shows that the converse is not true.
Consider the symmetric group S_4
1.Show that S_4 is not abelian.
2. Find the centre of S_4 .
3. Given \alpha, \beta \in S_4 with \alpha\beta=(1432),\beta\alpha=(1243), and
\alpha(1)=4, determine \alpha and \beta.
4. Find the cyclic subgroup of S_4 that has an order of 4.
5. Find a non-cyclic subgroup of S_4 that has order 4.
- Answer
-
1.
Let a=(1,2) and b=(2,3) both elements of S_4.
Consider ab=(1,2)(1,3)=(1,3,2) and ba=(1,3)(1,2)=(1,2,3).
Since (1,3,2) \ne (1,2,3), ab\ne ba \; for some a,b \in S_4, S_4 is non-abelian.
2.
S_4=\{e, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (124), (134), (234), (432), (431), (421), (321), (1234), (1243), (1324), (1342), (1423),( 1432)\}.
Method I:
Let s ∈ S_4, and N = \{1,2,3,4\}.
case 1: s = e. e is commutative by definition. Therefore e ∈ Z(S_4)
case 2: s is of type [2,1,1].
It follows that s = (i, j) for some distinct i, j ∈ N. Consider t = (i, k) for some k ∈ N
such that i ̸= k ̸= j. Then st = (i, k, j). But ts = (i, j, k) ̸= st. So those of type [2,1,1]
are not in Z(S_4).case 3: s is of type [2,2].
It follows that s = (i, j)(k,l) for some distinct i, j, k,l ∈ N. Consider t = (i, j, k). Then
st = (j,l, k) ̸= (i, k,l) = ts. So s ̸∈ Z(S_4).case 4: s is of type [3,1].
It follows that s = (i, j, k) for some distinct i, j, k ∈ N. Consider t = (i,l) such that
l ̸∈ {i, j, k}. Then st = (i,l, j, k) ̸= (i, j, k,l) = ts.Case 5: s is of type [4].
It follows that s = (i, j, k,l) for some distinct i, j, k,l ∈ N. Consider t = (i,l). Then
st = (j, k,l) ̸= (i, j, k) = ts.Except for e, all elements have some other element they do not commute with.
So Z(S_4) = \{e\}.\)Method II:
Proof by exhaustion:
Clearly e \in Z(S_4). \)
(12)(13) = (132), \quad (13)(12) = (123), \quad (12), (13) \notin Z(S_4)
(14)(12) = (124), \quad (12)(14) = (142), \quad (14) ,(1 2) \notin Z(S_4)
(23)(12) = (132), \quad (12)(23) = (123), \quad (23) ,(1 2) \notin Z(S_4)
(24)(12) = (142), \quad (12)(24) = (124), \quad (2 4),(1 2) \notin Z(S_4)
(34)(13) = (143), \quad (13)(34) = (341), \quad (34) (13) \notin Z(S_4)
(12)(34)(13) = (1432), \quad (13)(12)(34) = (3412), \quad (12)(34) \notin Z(S_4)
(13)(24)(12) = (1423), \quad (12)(13)(24) = (3421), \quad (13)(24) \notin Z(S_4)
(14)(23)(12) = (1324), \quad (12)(14)(23) = (2314), \quad (14)(23) \notin Z(S_4)
(123)(12) = (13), \quad (12)(123) = (23), \quad (123) \notin Z(S_4)
(132)(12) = (23), \quad (12)(132) = (13), \quad (132) \notin Z(S_4)
(124)(12) = (14), \quad (12)(124) = (24), \quad (124) \notin Z(S_4)
(142)(12) = (24), \quad (12)(142) = (14), \quad (142) \notin Z(S_4)
(134)(12) = (4123), \quad (12)(134) = (4213), \quad (134) \notin Z(S_4)
(143)(12) = (1243), \quad (12)(143) = (1432), \quad (143) \notin Z(S_4)
(234)(12) = (4213), \quad (12)(234) = (4123), \quad (234) \notin Z(S_4)
(243)(12) = (1432), \quad (12)(243) = (4312), \quad (243) \notin Z(S_4)
(1234)(12) = (134), \quad (12)(1234) = (234), \quad (1234) \notin Z(S_4)
(1243)(12) = (143), \quad (12)(1243) = (243), \quad (1243) \notin Z(S_4)
(1324)(12) = (14)(23), \quad (12)(1324) = (13)(24), \quad (1324) \notin Z(S_4)
(1342)(12) = (342), \quad (12)(1342) = (134), \quad (1342) \notin Z(S_4)
(1423)(12) = (13)(24), \quad (12)(1423) = (14)(23), \quad (1423) \notin Z(S_4)
(1432)(12) = (243), \quad (12)(1432) = (143), \quad (1432) \notin Z(S_4)
Having tried all x \in S_4, the only x \in S_4 that satisfies xg=gx, \; \forall g \in S_4 is the identity. Hence, Z(S_4) = \{e\}.Method III: Proof by contradiction
Let \gamma (\ne e) \in Z(S_4). We shall find an \alpha \in S_4 such that \gamma \alpha \ne \alpha \gamma. Since \gamma (\ne e), there exist l,m \in \{1,2,3,4\} such that \gamma (l) =m \ne l. Now we can choose an element k \in \{1,2,3,4\} such that k\ne l and k\ne m. Choose \alpha=(l,k). Then \gamma \alpha(l)=\gamma(k) and \alpha \gamma (l)= \alpha(m)=m. Since \gamma is a bijection and \gamma (l) =m \ne l, \gamma(k) \ne m. This is a contradiction. Hence, Z(S_4) = \{e\}.
3. Let \alpha, \beta \in S_4 with \alpha\beta=(1432),\beta\alpha=(1243), and
\alpha(1)=4,\begin{align} \beta\alpha(1) = \beta(\alpha(1)) = \beta(4) = 2 \nonumber\\ \alpha\beta(4) = \alpha(\beta(4)) =\alpha(2) = 3 \nonumber\\ \beta\alpha(2) = \beta(\alpha(2)) =\beta(3) = 4 \nonumber\\ \alpha\beta(3) = \alpha(\beta(3)) =\alpha(4) = 2 \nonumber\\ \beta\alpha(4) = \beta(\alpha(4)) =\beta(2) = 3 \nonumber\\ \alpha\beta(2) = \alpha(\beta(2)) =\alpha(3) = 1 \nonumber\\ \beta\alpha(3) = \beta(\alpha(3)) =\beta(1) = 1 \nonumber\end{align}
\text{from above}, \alpha =(1423) \beta= (234).4.
The subgroup of S_4, C_4 =\{e, (1,2,3,4),(1,3)(2,4),(1,4,3,2) \}, has an order 4 and is generated by (1,2,3,4).
(1,2,3,4)^2=(1,3)(2,4), (1,2,3,4)^3=(1,4,3,2), and (1,2,3,4)^4=e.
5.
The 2-2 cycles together will form an order 4 group.
\{e, (1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} is a subgroup of S_4 and has order 4. Note the inverse of (1,2)(3,4) is (4,3)(2,1), which is (1,2)(3,4). Since a similar argument can be made for the other 2-2 cycles, the inverses of each element exist. In addition, the set is closed under composition.
Consider the symmetric group S_7 .
1. Find all possible types of permutations and state how many of each type.
2. Find the possible order of all the 7! elements of the symmetric group S_7.
3. Factor the permutation (1 2 3 4 5)(67)(1357)(163) into disjoint cycles.
4. Find an element of maximum order in S_7.
- Answer
-
3. (1723456)
4.The cycle type in S_7 with the largest order is \underline{4} \underline{3}. An example of an element of this class would be: (1234)(567).