Loading [MathJax]/extensions/TeX/mathchoice.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Assignment 6

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 1
  1. Find subgroups H and K of D4 such that K is normal to H and H is normal to D4 but  K is not normal to D4
  2. Find subgroups H and K of S4 such that K is normal to H and H is normal to S4 but  K is not normal to S4.
  3. Prove or disprove: If all the subgroups of a group G are normal subgroups of G, then G is abelian.
Answer

1.  Let G=D4={e,r,r2,r3,s,sr,sr2,sr3} with r4=4,s2=e and srs=r1. Since |D4|=8, possible order of subgroups are 1,2,4 and 8. Let H={1,r2,s,sr2}. We shall show that H is normal to D4. Consider the following Cayley table for H,

Table 1: Cayley Table
  e r2 s sr2
e e r2 s sr2
r2 r2 e sr2 s
s s sr2 e r2
sr2 sr2 s r2 e
         

Hence, HG.  By Lagranges Theorem, [G:H]=|G||H|=2,gH=Hg, gG. Thus, HG.

Choose K={e,s}. We shall show that K is normal to H and K is not normal to D4.  Consider the following Cayley table for H,

Table 2: Cayley Table
  e s
e e s
s s e

Clearly  KG and KH. Since [H:K]=2, then hK=Kh, hH. Therefore KH. Let  k=sK and g=rG. Consider gkg1=rsr1=sr1r1=sr2=sr2K. Thus KG.

2. Let G=S4,H=K4={e,(12)(34),(13)(24),(14)(23)} and K={e,(12)(34)}. Consider the Cayley table for H and K,

clipboard_ef2d125473a59fc41fe6839bf65f4b2be.png clipboard_edc6bec9894d8718d4151c059a3fef0b5.png

Then clearly, HGKG. We shall show that HG and KH.

By Lagrange's Theorem, [H:K]=|H||K|=2,gK=Kg, gH. Thus, KH.   

Now, by Lagrange's Theorem, [G:H]=|G||H|=244=6, Hence H has 6 cosets in G.

 Now, consider the left cosets of H in G:eH={ee,e(12)(34),e(13)(24),e(14)(23)}={e,(12)(34),(13)(24),(14)(23)} =((1,2)(3,4))H=((1,3)(2,4))H=((1,4)(2,3))H. (1,2,3)H={(1,2,3)e,(1,2,3)(12)(34),(1,2,3)(13)(24),(1,2,3)(14)(23)}={(1,2,3),(1,3,4),(2,4,3),(4,2,1)}=(1,3,4)H=(2,4,3)H=(4,2,1)H. (3,2,1)H={(3,2,1)e,(3,2,1)(12)(34),(3,2,1)(13)(24),(3,2,1)(14)(23)}={(3,2,1),(2,3,4),(1,2,4),(1,4,3)}=(2,3,4)H=(1,2,4)H=(1,4,3)H. (12)H={(12),(34),(1324),(1243)}. (13)H={(13),(24),(1423),(1234)}.(14)H={(14),(23),(1342),(1432)}.

And the right cosets of H are: He={ee,(12)(34)e,(13)(24)e,(14)(23)e}={e,(12)(34),(13)(24),(14)(23)}=H((1,2)(3,4))=H((1,3)(2,4))=H((1,4)(2,3)) H(1,2,3)={e(1,2,3),(12)(34)(1,2,3),(13)(24)(1,2,3),(14)(23)(1,2,3)}={(1,2,3),(2,4,3),(1,4,2),(1,3,4)}=H(1,3,4)=H(2,4,3)=H(1,4,2) H(3,2,1)={e(3,2,1),(12)(34)(3,2,1),(13)(24)(3,2,1),(14)(23)(3,2,1)}={(3,2,1),(1,4,3),(2,3,4),(1,2,4)}=H(2,3,4)=H(1,2,4)=H(1,4,3)H(12)={(12),(34),(1324),(1243)}. H(13)={(13),(24),(1423),(1234)}.H(14)={(14),(23),(1342),(1432)}.

Since the right cosets are the same as the left cosets, we know that H is normal in G.

We shall show that K is not a normal subgroup of S4. Since (1,2,3)(12)(34)(3,2,1)=(1,3)(2,4)KK is not a normal subgroup of S4.

3. Consider G=Q8={1,1,i,i,j,j,k,k}. Then, by Lagrange's theorem, possible orders of subgroups of Q8 are 1,2,4 and 8. The trivial subgroups  Q8 and {e} of order 8 and 1 are normal subgroups of G. Let H be a subgroup of order 4. Then, by Lagrange's Theorem, [G:H]=|G||H|=84=2. Hence the subgroups of order 4 (namely H1={1,1,i,i},H2={1,1,j,j},H3={1,1,k,k}) are normal subgroups of G. Consider the subgroups of order 2, 1=Z(Q8). Hence, the subgroup of order 4 is a normal subgroup of G. Therefore, all subgroups of G are abelian. However, since ij=kk=jiG is not abelian.

Exercise 2
  1.  Let G=<a> where   |a|=12, and let H=<a4>. Find all cosets in G/H and  write down the Cayley table. Is G/H cyclic? Why or why not?
      Find the cosets in D6/Z(D6), write down the Cayley table of  D6/Z(D6).  Is D6/Z(D6) cyclic, why or why not?

Answer

1. Let G=a and let H=a4. Then, |H|=12gcd(12,4)=124=3. Hence, by Lagrange's Theorem. [G:H]=|G||H|=123=4, Hence H has 4 cosets in G.

First, let's find all elements in G/H.

G={a,a2, a10,a11,e}H={a4,a8,e}eH={a4,a8,e}=a4H=a8HaH={a,a5,a9}=a5H=a9Ha2H={a2,a6,a10}=a6H=a10Ha3H={a3,a7,a11}=a7H=a11HG/H={H,aH,a2H,a3H}

clipboard_eab08d6f81f1ea7b88d2674a02e369b28.png

From the table, G/H=aH. Hence G/H is a cyclic group.

2. Find the cosets in D6/Z(D6), write down the Cayley table of D6/Z(D6). Is D6/Z(D6) cyclic, why or why not?

Answer

Find all the cosets in D6/Z(D6): 

Let G=D6={e,r,r2,r3,r4,r5,s,sr,sr2,sr3,sr4,sr5} and let H=Z(D6)={e,r3}. Then D6/Z(D6)={gZ(D6)|gG}.

Index of Z(D6) in D6} The index of Z(D6) in D6 is calculated as follows: [D6:Z(D6)]=|D6||Z(D6)|=122=6. Therefore, the factor group D6/Z(D6) has 6 elements. 

er3=r3,r3r3=r6=e,{e,r3}=eH=r3Hrr3=r4,r4r3=r7=r,{r,r4}=rH=r4Hr2r3=r5,r5r3=r8=r2,{r2,r5}=r2H=r5Hsr3=sr3,sr3r3=sr6=s,{s,sr3}=sH=sr3Hsrr3=sr4,sr4r3=sr7=sr,{sr,sr4}=srH=sr4Hsr2r3=sr5,sr5r3=sr8=sr2,{sr2,sr5}=sr2H=sr5H

clipboard_e8e17e4effa85cb5a6dfad6f7b300a19f.png

Is D6/Z(D6) Cyclic?

 We analyze the orders of the elements of D6/Z(D6): |eZ(D6)|=1,|rZ(D6)|=3,|r2Z(D6)|=3, |sZ(D6)|=2,|rsZ(D6)|=2,|r2sZ(D6)|=2. Thus, D6/Z(D6) has no elements of order 6, and therefore, it has no possible generators. Hence, D6/Z(D6) is not a cyclic group.

 

3. Prove or disprove the following statements:  If H is a normal subgroup of G such that H and G/H are abelian, then 
G is abelian.

Answer

Counterexample:  Let G=S3 and H=A3. Then |G/H|=[G:H]=2. Thus, H is a normal subgroup of G, and G/H is cyclic. Clearly, A3 is also cyclic. Therefore, both G/H and H are abelian. However, S3 is not abelian.

Exercise 3
  1. Let G be a group. Show that the center of the group Z(G) is a normal subgroup of G.
  2. If G/Z(G)  is cyclic , then G is abelian.
  3. Let G be a non-ablian group of order pq, where p and q are prime. Then the center of G, Z(G)={e}.
Answer

1. First we shall show that Z(G) is a subgroup of G. Since eG and eg=ge, gG. Thus eZ(G). Let g1,g2Z(G). Then g1g=gg1,g2g=gg2 for all gG.

Let gG. Consider g(g1g2)=(gg1)g2=(g1g)g2=g1(gg2)=g1(g2g)=(g1g2)g. Thus (g1g2Z(G).

Since g1g=gg1, g11(g1g)=g11(gg1)gg11=g11g. Thus g11Z(G). Thus Z(G) is a subgroup of G.

Since g1Z(G), g1g1g=g1Z(G). Thus g1Z(G)gZ(G). Hence Z(G) is a normal subgroup of G.

2. Suppose G/Z(G) is cyclic. Then G/Z(G)=(gZ(G)), for some gG. Let g1,g2G Then g1Z(G)=gmZ(G),g2Z(G)=(gZ(G))n=gnZ(G), for  some m,nZ. Thus g1=gmf1,g2=gnf2, for some f1,f2Z(G). Now consider: g1g2=gmf1gnf2, =gmgnf1f2, =gm+nf1f2, =gn+mf1f2, =gnf2gmf1, =g2g1. Thus, g1g2=g2g1, which shows that G is abelian.

3. Let H:=Z(G). Since HG, by Lagrange's Theorem (Theorem 4.1.4), we know that |H||G|. Hence the potential values of |H| are 1,p,q,pq. Let's consider each.

Case 1:|H|=pq,  If |H|=pq then |H|=|G|, and H=G. This would mean that G=Z(G), but since G is non-abelian, this is a contradiction. Therefore, |H|pq.

Case 2:|H|=p or |H|=q. This means that H is of prime order, and by the previous problem, this implies that G is abelian. Again, this is a contradiction. Therefore |H|p and |H|q

Therefore, if G is a non-abelian group of order pq, then Z(G)={e}.

Exercise 4
  1.  Let  h:GG1 be a group homomorphism. If  K is normal to subgroup of G, then show that h(K) is a normal subgroup of h(G).
  2.  If h1:GG1 is  a group homomorphism and G=X is generated by a subset X, then  show that h=h1 if and only if   h(x)=h1(x),xX.
  3.   Show that there are almost six  homomorphisms from S3 to a cyclic group of order 6, Z6.
Answer

1. Let k1,k2K, then since K is a subgroup of G,  then h(k1k2)=h(k1)h(k2)h(K). The identity element eK maps to h(e)=eG1 (the identity in G1), so eG1h(K). If kK, then k1K and hence h(k1)=h(k)1h(K). Thus, h(K) is a subgroup of h(G). To show h(K)h(G), we need to show that for every h(g)h(G) and h(k)h(K), h(g)h(k)h(g)1h(K). Given h(g)h(G), there exists some gG such that h(g)=h(g). Similarly, for h(k)h(K), there exists some kK. Consider the element gkg1 in G. Since KG, we have: gkg1K. Consider, h(gkg1)=h(g)h(k)h(g1)=h(g)h(k)h(g)1. Since gkg1K and K is mapped into h(K), we get: h(gkg1)h(K).

But h(gkg1)=h(g)h(k)h(g)1, hence: h(g)h(k)h(g)1h(K). This shows that h(K) is normal in h(G). Hence, KGh(K)h(G).

2. Discussed in Tutorial.

3.  Discussed in Tutorial.

Exercise 5

 1. Let G be a group and let aG then show that σa:GG defined by σa(g)=aga1is an isormorphism.
2. Prove or disprove the following statements: 

a. U(5) is isormorphic to Z4 .

b. Z under addition is isormorphic to Q under addition.

Answer

a. Let ϕ:Z4U(5) be defined by:  \phi(n)=2^n \pmod 5. That is 

\phi(0)=1\phi(1)=2\phi(3)=8 \equiv 3 \pmod{5}, and \phi(2)=4.

We will show \phi(a+b)=\phi(a)\phi(b), \; \forall a,b\in \mathbb{Z}_4.

We will proceed by proof by exhaustion.  

There are 10 cases to consider since addition and multiplication are both commutative.

\phi(0+0)=\phi(0)=1=(1)(1)=\phi(0)\times \phi(0).

\phi(0+1)=\phi(1)=2=(1)(2)=\phi(0)\times \phi(1).

\phi(0+2)=\phi(2)=4=(1)(4)=\phi(0)\times \phi(2).

\phi(0+3)=\phi(3)=3=(1)(4)=\phi(0)\times \phi(3).

\phi(1+1)=\phi(2)=4=(2)(2)=\phi(1)\times \phi(1).

\phi(1+2)=\phi(3)=3=(1)(3)=\phi(1)\times \phi(3).

\phi(1+3)= \phi(0)=1\equiv (2)(3)=\phi(1)\times \phi(3).

\phi(2+2) = \phi(0)=1=(1)(1)=\phi(0)\times \phi(0).

\phi(2+3)= \phi(1)=2\equiv (4)(3)=\phi(2)\times \phi(3).

\phi(3+3)= \phi(2)=4 \equiv(3)(3)=\phi(3)\times \phi(3).

Having examined all the possible cases, \phi(ab)=\phi(a)\phi(b), \; \forall a,b\in \mathbb{Z}_4.

b. Counterexample:

We know that (\mathbb{Z},+) is a cyclic group generated by \langle -1\rangle and \langle +1 \rangle.

Assume that (\mathbb{Q}, +) is cyclic. We will show that (\mathbb{Q}, +) is not cyclic.

Since \mathbb{Q} is cyclic, it can be generated by some \frac{p}{q}, p,q(\ne 0) \in \mathbb{Z}

Thus \frac{p}{2q} = n \frac{p}{q} for some n \in \mathbb{Z}. That is \frac{p}{2q} =  \frac{np}{q} \implies n=\frac{1}{2}.

This is a contradiction, and therefore (\mathbb{Q}, +) is not cyclic.

 

 

Exercise \PageIndex{6}

 List or characterize all of the following rings' units. Justify your answer.

  1.   \mathbb{Z}_{12}
  2. M_{22}(\mathbb{Z}_2)
  3. \mathbb{Z}(i)
Answer

1. Let a \in \mathbb{Z}_{12} be a unit. Then there exists x \in \mathbb{Z}_{12} such that ax \equiv 1\pmod{12}. Thus 12 \mid (ax-1) \implies (ax-1)=12y, for some y \in \mathbb{Z}. Therefore, ax-12y=1. Hence gcd(a,12)=1. Therefore the units are 1, 5, 7, 11.

2. Let A \in M_{22}(\mathbb{Z}_2) be a unit. . Then there exists X \in M_{22}(\mathbb{Z}_2) such that \begin{align*}AX= \begin{bmatrix}1 & 0 \\0 & 1\end{bmatrix}\end{align*}, and det(A) \ne 0. The determinant of a 2 \times 2 matrix A is:
A =  \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \text{and} \quad \det(A) = ad - bc \pmod{2}.

We now list all matrices in M_2(\mathbb{Z}_2) with \det(A) \equiv 1 \pmod{2} . These matrices are:
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.

Thus, the units in M_2(\mathbb{Z}_2) are these six matrices. Each of these has an inverse in M_2(\mathbb{Z}_2) , confirming that they are units.

 3. Let z = a + bi \in \mathbb{Z}[i] where a, b \in \mathbb{Z} be a unit. Then multiplicative inverse of z is given by $z^{-1}$. Then  z  z^{-1} = 1 \implies |z || z^{-1}| = 1 . Since |z| is a nonnegative integer, |z|=1. Thus a^2+b^2=1.) Hence \(a=\pm1 or b=\pm 1.

 Therefore the units of \mathbb{Z}[i] are \{-1, 1, -i, i\}.


 

Exercise \PageIndex{7}

An element e of a ring R is said to be idempotent if e^2=e.

  1.   If e is an idempotent of a ring R, then show that 1-2e is a unit.
  2.  Find all idempotents in \mathbb{Z}_{12}.
  3.   Find all the idempotents in an integral domain R.
Answer

1. Let e \in R be an idempotent of a ringR. We shall show that 1-2e is a unit of R.

Consider,\begin{eqnarray}(1-2e)(1-2e) &=& 1 - 2e - 2e + 4e^2 \nonumber \\&=& 1 - 4e + 4e \nonumber \\&=& 1. \nonumber\end{eqnarray}

Since (1-2e)(1-2e) = 1(1-2e) is a unit of R.

2. Let x be an idempotent in \mathbb{Z}_{12}, Then x^2 = 1 \pmod{12}. Let's find these by exhaustion. 

\begin{align}\textbf{Idempotents} && \textbf{Non-Idempotents} \nonumber \\0^2 = 0 \equiv 0\pmod{12} && 2^2 = 4 \equiv 4\pmod{12}\nonumber \\1^2 = 1 \equiv 1\pmod{12} && 3^2 = 9 \equiv 9\pmod{12}\nonumber \\4^2 = 16 \equiv 4\pmod{12} && 5^2 = 25 \equiv 1\pmod{12} \nonumber \\9^2 = 81 \equiv 9\pmod{12} && 6^2 = 36 \equiv 0\pmod{12} \nonumber \\&& 7^2 = 49 \equiv 1\pmod{12} \nonumber \\&& 8^2 = 64 \equiv 4\pmod{12} \nonumber \\&& 10^2 = 100 \equiv 4\pmod{12} \nonumber \\&& 11^2 = 121 \equiv 1\pmod{12} \nonumber\end{align}

Therefore, the idempotents of \mathbb{Z}_{12} are \{0, 1, 4, 9\}.

3. Let e be an  idempotent in an integral domain R. Then e^2 = e \implies e^2 - e = 0 \implies e(e-1) = 0.

Since the integral domain R contains no zero divisors,  e=0 or e-1 = 0. Therefore, the idempotents of R are 0, and 1.


Assignment 6 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?