Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Assignment 6

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 1
  1. Find subgroups H and K of D4 such that K is normal to H and H is normal to D4 but  K is not normal to D4
  2. Find subgroups H and K of S4 such that K is normal to H and H is normal to S4 but  K is not normal to S4.
  3. Prove or disprove: If all the subgroups of a group G are normal subgroups of G, then G is abelian.
Answer

1.  Let G=D4={e,r,r2,r3,s,sr,sr2,sr3} with r4=4,s2=e and srs=r1. Since |D4|=8, possible order of subgroups are 1,2,4 and 8. Let H={1,r2,s,sr2}. We shall show that H is normal to D4. Consider the following Cayley table for H,

Table 1: Cayley Table
  e r2 s sr2
e e r2 s sr2
r2 r2 e sr2 s
s s sr2 e r2
sr2 sr2 s r2 e
         

Hence, HG.  By Lagranges Theorem, [G:H]=|G||H|=2,gH=Hg, gG. Thus, H.

Choose K= \{e,s\}.  We shall show that K is normal to H and K is not normal to D_4.  Consider the following Cayley table for H,

Table \PageIndex{2}: Cayley Table
  e s
e e s
s s e

Clearly  K\leq G and K\le H. \text{Since }[H:K] = 2 \text{, then } hK = Kh, \forall\ h\in H. Therefore  K \trianglelefteq H . Let  k = s \in K and g = r  \in G. Consider gkg^{-1} = rsr^{-1} = sr^{-1}r^{-1} = sr^{-2} = sr^2 \notin K. Thus K\ntrianglelefteq G.

2. Let G = S_4, H= K_4 = \{e,(12)(34), (13)(24), (14)(23)\} and K=\{e, (12)(34)\}. Consider the Cayley table for H and K,

clipboard_ef2d125473a59fc41fe6839bf65f4b2be.png clipboard_edc6bec9894d8718d4151c059a3fef0b5.png

Then clearly, H\leq G \text{, } K\leq G. We shall show that H \trianglelefteq G and K \trianglelefteq H.

By Lagrange's Theorem, [H:K] = \frac{|H|}{|K|} = 2, gK = Kg, \forall\ g\in H. Thus, K \trianglelefteq H.   

Now, by Lagrange's Theorem, [G:H] = \frac{|G|}{|H|} = \dfrac{24}{4}=6, Hence H has 6 cosets in G.

 Now, consider the left cosets of H in G: eH = \{ ee, e(12)(34), e(13)(24), e(14)(23) \}  = \{ e, (12)(34), (13)(24), (14)(23) \} = ((1, 2)(3, 4))H = ((1, 3)(2, 4))H  = ((1, 4)(2, 3))H.  (1, 2, 3)H = \{ (1, 2, 3)e, (1, 2, 3)(12)(34), (1, 2, 3)(13)(24), (1, 2, 3)(14)(23) \} = \{ (1, 2, 3), (1, 3, 4), (2, 4, 3), (4, 2, 1) \} = (1, 3, 4)H  = (2, 4, 3)H  = (4, 2, 1)H . (3, 2, 1)H= \{ (3, 2, 1)e, (3, 2, 1)(12)(34), (3, 2, 1)(13)(24), (3, 2, 1)(14)(23) \}  = \{ (3, 2, 1), (2, 3, 4), (1, 2, 4), (1, 4, 3) \} = (2, 3, 4)H = (1, 2, 4)H = (1, 4, 3)H.   (12)H= \{ (12), (34), (1324), (1243) \}.   (13)H = \{ (13), (24), (1423), (1234) \}. (14)H = \{ (14), (23), (1342), (1432) \}.

And the right cosets of are: He = \{ ee, (12)(34)e, (13)(24)e, (14)(23)e \}  = \{ e, (12)(34), (13)(24), (14)(23) \}  = H((1, 2)(3, 4))  = H((1, 3)(2, 4)) = H((1, 4)(2, 3)) H(1, 2, 3) = \{ e(1, 2, 3), (12)(34)(1, 2, 3), (13)(24)(1, 2, 3), (14)(23)(1, 2, 3) \}  = \{ (1, 2, 3), (2, 4, 3), (1, 4, 2), (1, 3, 4) \} = H(1, 3, 4)= H(2, 4, 3)= H(1, 4, 2) H(3, 2, 1) = \{ e(3, 2, 1), (12)(34)(3, 2, 1), (13)(24)(3, 2, 1), (14)(23)(3, 2, 1) \}  = \{ (3, 2, 1), (1, 4, 3), (2, 3, 4), (1, 2, 4) \} = H(2, 3, 4)  = H(1, 2, 4)  = H(1, 4, 3) H(12)= \{ (12), (34), (1324), (1243) \}.  H (13)= \{ (13), (24), (1423), (1234) \}. H (14)= \{ (14), (23), (1342), (1432) \}.

Since the right cosets are the same as the left cosets, we know that is normal in .

We shall show that K is not a normal subgroup of S_4. Since (1, 2, 3)(12)(34)(3,2,1)=(1,3)(2,4)\notin KK is not a normal subgroup of S_4.

3. Consider G=Q_8=\{1, -1, i, -i, j, -j, k, -k\}. Then, by Lagrange's theorem, possible orders of subgroups of Q_8 are 1, 2, 4 and 8. The trivial subgroups  Q_8 and \{e\} of order 8 and 1 are normal subgroups of G. Let H be a subgroup of order 4. Then, by Lagrange's Theorem, [G:H] = \frac{|G|}{|H|} = \dfrac{8}{4}=2. Hence the subgroups of order 4 (namely H_1 =\{1, -1, i, -i\}, H_2=\{1, -1, j, -j\}, H_3 =\{1, -1, k, -k\}) are normal subgroups of G. Consider the subgroups of order 2, \langle -1\rangle= Z(Q_8). Hence, the subgroup of order 4 is a normal subgroup of G. Therefore, all subgroups of G are abelian. However, since ij =k \ne -k= jiG is not abelian.

Exercise \PageIndex{2}
  1.  Let G=<a> where   |a|=12, and let H=<a^4>. Find all cosets in G/H and  write down the Cayley table. Is G/H cyclic? Why or why not?
      Find the cosets in D_6/Z(D_6), write down the Cayley table of  D_6/Z(D_6).  Is D_6/Z(D_6) cyclic, why or why not?

Answer

1. Let G = \langle a\rangle and let H = \langle a^4\rangle. Then, |H|=\dfrac{12}{gcd(12,4)}=\dfrac{12}{4}=3. Hence, by Lagrange's Theorem. [G:H] = \frac{|G|}{|H|} = \dfrac{12}{3}=4, Hence H has 4 cosets in G.

First, let's find all elements in G/H.

\begin{align*}G &= \{a, a^2, \dots\ a^{10}, a^{11}, e\}\\H &= \{a^4, a^8, e\}\\&eH = \{a^4, a^8, e\} = a^4H = a^8H\\&aH = \{a, a^5, a^9\} = a^5H = a^9H\\&a^2H = \{a^2, a^6, a^{10}\} = a^6H = a^{10}H\\&a^3H = \{a^3, a^7, a^{11}\} = a^7H = a^{11}H\\G/H &= \{H, aH, a^2H, a^3H\}\end{align*}

clipboard_eab08d6f81f1ea7b88d2674a02e369b28.png

From the table, G/H = \langle aH \rangle. Hence G/H is a cyclic group.

2. Find the cosets in D_6/Z(D_6), write down the Cayley table of D_6/Z(D_6). Is D_6/Z(D_6) cyclic, why or why not?

Answer

Find all the cosets in D_6/Z(D_6): 

Let G = D_6 = \{e, r, r^2, r^3, r^4, r^5, s, sr, sr^2, sr^3, sr^4, sr^5\} and let H = Z(D_6) = \{e, r^3\}. Then D_6 / Z(D_6) = \{gZ(D_6)| g\in G\}.

Index of Z(D_6) in D_6 } The index of Z(D_6) in D_6 is calculated as follows: [D_6 : Z(D_6)] = \frac{|D_6|}{|Z(D_6)|} = \frac{12}{2} = 6. Therefore, the factor group D_6 / Z(D_6) has 6 elements. 

\begin{align*}&er^3 = r^3, && r^3r^3 = r^6 = e, &&\{e, r^3\} = eH = r^3H\\&rr^3 = r^4, && r^4r^3 = r^7 = r, &&\{r, r^4\} = rH = r^4H\\&r^2r^3 = r^5, && r^5r^3 = r^8 = r^2, &&\{r^2, r^5\} = r^2H = r^5H\\&sr^3 = sr^3, && sr^3r^3 = sr^6 = s, &&\{s, sr^3\} = sH = sr^3H\\&srr^3 = sr^4, && sr^4r^3 = sr^7 = sr, &&\{sr, sr^4\} = srH = sr^4H\\&sr^2r^3 = sr^5,&& sr^5r^3 = sr^8 = sr^2, &&\{sr^2, sr^5\} = sr^2H = sr^5H\\ \end{align*}

clipboard_e8e17e4effa85cb5a6dfad6f7b300a19f.png

Is D_6 / Z(D_6) Cyclic?

 We analyze the orders of the elements of D_6 / Z(D_6) : | \langle eZ(D_6) \rangle | = 1, \quad | \langle rZ(D_6) \rangle | = 3, \quad | \langle r^2Z(D_6) \rangle | = 3, | \langle sZ(D_6) \rangle | = 2, \quad | \langle rsZ(D_6) \rangle | = 2, \quad | \langle r^2sZ(D_6) \rangle | = 2. Thus, D_6 / Z(D_6) has no elements of order 6, and therefore, it has no possible generators. Hence,  D_6 / Z(D_6) is not a cyclic group.

 

3. Prove or disprove the following statements:  If H is a normal subgroup of G such that H and G/H are abelian, then 
G is abelian.

Answer

Counterexample:  Let G = S_3 and H = A_3 . Then  |G / H| = [G : H] = 2. Thus, H is a normal subgroup of G , and G / H is cyclic. Clearly, A_3 is also cyclic. Therefore, both G / H and H are abelian. However, S_3 is not abelian.

Exercise \PageIndex{3}
  1. Let G be a group. Show that the center of the group Z(G) is a normal subgroup of G.
  2. If G/Z(G)  is cyclic , then G is abelian.
  3. Let G be a non-ablian group of order pq, where p and q are prime. Then the center of G, Z(G)=\{e\}.
Answer

1. First we shall show that Z(G) is a subgroup of G. Since e\in G and eg=ge, \forall g \in G. Thus e \in Z(G). Let g_1,g_2\in Z(G). Then g_1g=gg_1, g_2g=gg_2 for all g\in G.

Let g\in G. Consider g(g_1g_2)=( gg_1)g_2= (g_1g)g_2= g_1(gg_2)= g_1(g_2g)= (g_1g_2)g. Thus (g_1g_2\in Z(G).

Since g_1g=gg_1, g_1^{-1}( g_1g)=g_1^{-1}(gg_1) \implies g g_1^{-1}=g_1^{-1}g. Thus g_1^{-1}\in Z(G). Thus Z(G) is a subgroup of G.

Since g_1 \in Z(G), g^{-1} g_1g= g_1 \in Z(G). Thus g^{-1} Z(G) g \subset Z(G). Hence Z(G) is a normal subgroup of G.

2. Suppose G / Z(G) is cyclic. Then  G / Z(G) =\langle (gZ(G))\rangle, for some g \in G. Let g_1,g_2 \in G Then g_1 Z(G)= g^m Z(G), \quad g_2 Z(G)= (gZ(G))^n = g^n Z(G), for  some m, n \in \mathbb{Z} . Thus  g_1 = g^m f_1, \quad g_2 = g^n f_2,  for some f_1, f_2 \in Z(G) . Now consider: g_1 g_2 = g^m f_1 g^n f_2, = g^m g^n f_1 f_2, = g^{m+n} f_1 f_2, = g^{n+m} f_1 f_2, = g^n f_2 g^m f_1, = g_2 g_1. Thus, g_1 g_2 = g_2 g_1 , which shows that G is abelian.

3. Let H := Z(G). Since H \leq G, by Lagrange's Theorem (Theorem 4.1.4), we know that |H|\mid |G| . Hence the potential values of |H| are  1, p, q, pq. Let's consider each.

Case 1:|H| = pq,  If |H| = pq then |H| = |G|, and H = G. This would mean that G = Z(G), but since G is non-abelian, this is a contradiction. Therefore, |H| \neq pq.

Case 2:|H| = p or |H| = q. This means that H is of prime order, and by the previous problem, this implies that G is abelian. Again, this is a contradiction. Therefore |H| \neq p and |H| \neq q

Therefore, if G is a non-abelian group of order pq, then Z(G) = \{ e\}.

Exercise \PageIndex{4}
  1.  Let  h: G\to G_1 be a group homomorphism. If  K is normal to subgroup of G, then show that h(K) is a normal subgroup of h(G).
  2.  If h_1: G\to G_1 is  a group homomorphism and G=\langle X\rangle is generated by a subset X, then  show that h=h_1 if and only if   h(x)=h_1(x), \forall x\in X.
  3.   Show that there are almost six  homomorphisms from S_3 to a cyclic group of order 6, \mathbb{Z}_6.
Answer

1. Let k_1, k_2 \in K, then since K is a subgroup of G,  then h(k_1k_2) = h(k_1)h(k_2) \in h(K). The identity element e \in K maps to h(e) = e_{G_1} (the identity in G_1), so e_{G_1} \in h(K). If k \in K, then k^{-1} \in K and hence h(k^{-1}) = h(k)^{-1} \in h(K). Thus, h(K) is a subgroup of h(G). To show h(K) \trianglelefteq h(G), we need to show that for every h(g) \in h(G) and h(k) \in h(K), h(g) h(k) h(g)^{-1} \in h(K). Given h(g) \in h(G), there exists some g \in G such that h(g) = h(g). Similarly, for h(k) \in h(K), there exists some k \in K. Consider the element gkg^{-1} in G. Since K \trianglelefteq G, we have: gkg^{-1} \in K. Consider, h(gkg^{-1}) = h(g)h(k)h(g^{-1}) = h(g)h(k)h(g)^{-1}. Since gkg^{-1} \in K and K is mapped into h(K), we get: h(gkg^{-1}) \in h(K).

But h(gkg^{-1}) = h(g)h(k)h(g)^{-1}, hence: h(g)h(k)h(g)^{-1} \in h(K). This shows that h(K) is normal in h(G). Hence, K \trianglelefteq G \implies h(K) \trianglelefteq h(G).

2. Discussed in Tutorial.

3.  Discussed in Tutorial.

Exercise \PageIndex{5}

 1. Let G be a group and let a \in G then show that \sigma_a :G \to G defined by \sigma_a(g)=aga^{-1}is an isormorphism.
2. Prove or disprove the following statements: 

a. U(5) is isormorphic to \mathbb{Z}_4 .

b. \mathbb{Z} under addition is isormorphic to \mathbb{Q} under addition.

Answer

a. Let \phi: \; \mathbb{Z}_4 \rightarrow U(5) be defined by:  \phi(n)=2^n \pmod 5. That is 

\phi(0)=1\phi(1)=2\phi(3)=8 \equiv 3 \pmod{5}, and \phi(2)=4.

We will show \phi(a+b)=\phi(a)\phi(b), \; \forall a,b\in \mathbb{Z}_4.

We will proceed by proof by exhaustion.  

There are 10 cases to consider since addition and multiplication are both commutative.

\phi(0+0)=\phi(0)=1=(1)(1)=\phi(0)\times \phi(0).

\phi(0+1)=\phi(1)=2=(1)(2)=\phi(0)\times \phi(1).

\phi(0+2)=\phi(2)=4=(1)(4)=\phi(0)\times \phi(2).

\phi(0+3)=\phi(3)=3=(1)(4)=\phi(0)\times \phi(3).

\phi(1+1)=\phi(2)=4=(2)(2)=\phi(1)\times \phi(1).

\phi(1+2)=\phi(3)=3=(1)(3)=\phi(1)\times \phi(3).

\phi(1+3)= \phi(0)=1\equiv (2)(3)=\phi(1)\times \phi(3).

\phi(2+2) = \phi(0)=1=(1)(1)=\phi(0)\times \phi(0).

\phi(2+3)= \phi(1)=2\equiv (4)(3)=\phi(2)\times \phi(3).

\phi(3+3)= \phi(2)=4 \equiv(3)(3)=\phi(3)\times \phi(3).

Having examined all the possible cases, \phi(ab)=\phi(a)\phi(b), \; \forall a,b\in \mathbb{Z}_4.

b. Counterexample:

We know that (\mathbb{Z},+) is a cyclic group generated by \langle -1\rangle and \langle +1 \rangle.

Assume that (\mathbb{Q}, +) is cyclic. We will show that (\mathbb{Q}, +) is not cyclic.

Since \mathbb{Q} is cyclic, it can be generated by some \frac{p}{q}, p,q(\ne 0) \in \mathbb{Z}

Thus \frac{p}{2q} = n \frac{p}{q} for some n \in \mathbb{Z}. That is \frac{p}{2q} =  \frac{np}{q} \implies n=\frac{1}{2}.

This is a contradiction, and therefore (\mathbb{Q}, +) is not cyclic.

 

 

Exercise \PageIndex{6}

 List or characterize all of the following rings' units. Justify your answer.

  1.   \mathbb{Z}_{12}
  2. M_{22}(\mathbb{Z}_2)
  3. \mathbb{Z}(i)
Answer

1. Let a \in \mathbb{Z}_{12} be a unit. Then there exists x \in \mathbb{Z}_{12} such that ax \equiv 1\pmod{12}. Thus 12 \mid (ax-1) \implies (ax-1)=12y, for some y \in \mathbb{Z}. Therefore, ax-12y=1. Hence gcd(a,12)=1. Therefore the units are 1, 5, 7, 11.

2. Let A \in M_{22}(\mathbb{Z}_2) be a unit. . Then there exists X \in M_{22}(\mathbb{Z}_2) such that \begin{align*}AX= \begin{bmatrix}1 & 0 \\0 & 1\end{bmatrix}\end{align*}, and det(A) \ne 0. The determinant of a 2 \times 2 matrix A is:
A =  \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \text{and} \quad \det(A) = ad - bc \pmod{2}.

We now list all matrices in M_2(\mathbb{Z}_2) with \det(A) \equiv 1 \pmod{2} . These matrices are:
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.

Thus, the units in M_2(\mathbb{Z}_2) are these six matrices. Each of these has an inverse in M_2(\mathbb{Z}_2) , confirming that they are units.

 3. Let z = a + bi \in \mathbb{Z}[i] where a, b \in \mathbb{Z} be a unit. Then multiplicative inverse of z is given by $z^{-1}$. Then  z  z^{-1} = 1 \implies |z || z^{-1}| = 1 . Since |z| is a nonnegative integer, |z|=1. Thus a^2+b^2=1.) Hence \(a=\pm1 or b=\pm 1.

 Therefore the units of \mathbb{Z}[i] are \{-1, 1, -i, i\}.


 

Exercise \PageIndex{7}

An element e of a ring R is said to be idempotent if e^2=e.

  1.   If e is an idempotent of a ring R, then show that 1-2e is a unit.
  2.  Find all idempotents in \mathbb{Z}_{12}.
  3.   Find all the idempotents in an integral domain R.
Answer

1. Let e \in R be an idempotent of a ringR. We shall show that 1-2e is a unit of R.

Consider,\begin{eqnarray}(1-2e)(1-2e) &=& 1 - 2e - 2e + 4e^2 \nonumber \\&=& 1 - 4e + 4e \nonumber \\&=& 1. \nonumber\end{eqnarray}

Since (1-2e)(1-2e) = 1(1-2e) is a unit of R.

2. Let x be an idempotent in \mathbb{Z}_{12}, Then x^2 = 1 \pmod{12}. Let's find these by exhaustion. 

\begin{align}\textbf{Idempotents} && \textbf{Non-Idempotents} \nonumber \\0^2 = 0 \equiv 0\pmod{12} && 2^2 = 4 \equiv 4\pmod{12}\nonumber \\1^2 = 1 \equiv 1\pmod{12} && 3^2 = 9 \equiv 9\pmod{12}\nonumber \\4^2 = 16 \equiv 4\pmod{12} && 5^2 = 25 \equiv 1\pmod{12} \nonumber \\9^2 = 81 \equiv 9\pmod{12} && 6^2 = 36 \equiv 0\pmod{12} \nonumber \\&& 7^2 = 49 \equiv 1\pmod{12} \nonumber \\&& 8^2 = 64 \equiv 4\pmod{12} \nonumber \\&& 10^2 = 100 \equiv 4\pmod{12} \nonumber \\&& 11^2 = 121 \equiv 1\pmod{12} \nonumber\end{align}

Therefore, the idempotents of \mathbb{Z}_{12} are \{0, 1, 4, 9\}.

3. Let e be an  idempotent in an integral domain R. Then e^2 = e \implies e^2 - e = 0 \implies e(e-1) = 0.

Since the integral domain R contains no zero divisors,  e=0 or e-1 = 0. Therefore, the idempotents of R are 0, and 1.


Assignment 6 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?