Skip to main content
Mathematics LibreTexts

Assignment 6

  • Page ID
    169956
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Exercise \(\PageIndex{1}\)
    1. Find subgroups \( H \) and \( K \) of \( D_4 \) such that \( K \) is normal to \( H \) and \(H\) is normal to \(D_4\) but  \( K \) is not normal to \(D_4\). 
    2. Find subgroups \( H \) and \( K \) of \( S_4 \) such that \( K \) is normal to \( H \) and \(H\) is normal to \(S_4\) but  \( K \) is not normal to \(S_4.\)
    3. Prove or disprove: If all the subgroups of a group \(G\) are normal subgroups of \(G\), then \(G\) is abelian.
    Exercise \(\PageIndex{2}\)
    1.  Let \(G=<a>\) where   \(|a|=12,\) and let \(H=<a^4>.\) Find all cosets in \(G/H\) and  write down the Cayley table. Is \(G/H\) cyclic? Why or why not?
        Find the cosets in \(D_6/Z(D_6),\) write down the Cayley table of  \(D_6/Z(D_6).\)  Is \(D_6/Z(D_6)\) cyclic, why or why not?

    2.  Prove or disprove the following statements:  If \(H \) is a normal subgroup of \(G\) such that \(H\) and \(G/H\) are abelian, then 
      \(G\) is abelian.

    Exercise \(\PageIndex{3}\)
    1. Let \(G\) be a group. Show that the center of the group \(Z(G)\) is a normal subgroup of \(G.\)
    2. If \(G/Z(G)\)  is cyclic , then \(G\) is abelian.
    3. Let \(G\) be a non-ablian group of order \(pq\), where \(p\) and \(q\) are prime. Then the center of \(G\), \(Z(G)=\{e\}.\)
    Exercise \(\PageIndex{4}\)
    1.  Let  \(h: G\to G_1\) be a group homomorphism. If  \(K\) is normal to subgroup of \(G,\) then show that \(h(K)\) is a normal subgroup of\(h(G).\)
    2.  If \(h_1: G\to G_1\) is  a group homomorphism and \(G=\langle X\rangle\) is generated by a subset \(X\), then  show that \(h=h_1\) if and only if   \(h(x)=h_1(x), \forall x\in X.\)
    3.   Show that there are almost six  homomorphisms from \(S_3\) to a cyclic group of order \(6\), \(\mathbb{Z}_6\).
    Exercise \(\PageIndex{5}\)

     Let \(G\) be a group and let \(a \in G\) then show that \(\sigma_a :G \to G\) defined by \(\sigma_a(g)=aga^{-1}\)is an isormorphism.
    Prove or disprove the following statements: 

    1. \(U(5)\) is isormorphic to \( \mathbb{Z}_4\) .
    2. \(\mathbb{Z}\) under addition is isormorphic to \(\mathbb{Q}\) under addition.
    Exercise \(\PageIndex{6}\)

     List or characterize all of the following rings' units. Justify your answer.

    1.   \(\mathbb{Z}_{12}\)
    2. \(M_{22}(\mathbb{Z}_2)\)
    3. \(\mathbb{Z}(i)\)
    Answer

    TBA

    Exercise \(\PageIndex{7}\)

    An element \(e\) of a ring \(R\) is said to be idempotent if \(e^2=e.\)

    1.   If \(e\) is an idempotent of a ring \(R\), then show that \(1-2e\) is a unit.
    2.  Find all idempotents in \(\mathbb{Z}_{12}\).
    3.   Find all the idempotents in an integral domain \(R\).
    Answer

    TBA


    Assignment 6 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?