5E: Exercises
This page is a draft and is under active development.
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise 5E.1
∫4−1x√x+4dx
- Answer
-
Let u=x+4, then du=dx and x=u−4.
Now ∫4−1x√x+4dx=∫4−1u−4√udu
=∫4−1(u−4)u−12du
=∫4−1u12−4u−12du
=(23u32−421u12)|x=4x=−1
=(23(x+4)32−8(x+4)12)|x=4x=−1
=23(832−332)−8(812−312)
=6√3−163√2.
Exercise 5E.2
∫10x3√x2+3dx
- Answer
-
Let u=x2+3, then du=2xdx and x2=u−3. Now,
∫10x3√x2+3dx=12∫10x2√x2+32xdx
=12∫10(u−3)√udu)
=12∫10(u32−3u−12)du)
=12(25u52−321u12)|x=1x=0)
=12(25(x2+3)52−321(x2+3)12)|x=1x=0)
=12(25((12+3)52−(02+3)52)−6((12+3)12−(02+3)12)
=6√35−85.
Exercise 5E.3
∫√21xx4+3dx
- Answer
-
Let u=x2, then du=2xdx. Now,
∫√21xx4+3dx=12∫√211u2+3du
=12√3tan−1(u√3)|x=√2x=1
=12√3tan−1(x2√3)|x=√2x=1
=12√3(tan−1((√2)2√3)−tan−1(12√3))
=12√3(tan−1(2√3)−tan−1(1√3))
=12√3(tan−1(2√3)−π6)
=π−6tan−1(2√3)12√3.
Exercise 5E.4
∫√21xe−x2dx
- Answer
-
Let u=−x2, then du=−2xdx. Now,
∫√21xe−x2dx=−12∫√21eudu
=−12eu|x=√2x=1
=−12e−x2|x=√2x=1
=−12(e−(√2)2−e−1)
=−12(e−2−e−1)
=e−12e2.
Exercise 5E.5
∫sin(3x)e1+cos(3x)dx.
- Answer
-
Let u=e−(1+cos(3x)), then du=3e−(1+cos(3x))sin(3x)dx. Now,
∫sin(3x)e1+cos(3x)dx=13∫du=u3+C=e−(1+cos(3x))6+C.