Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5E: Exercises

This page is a draft and is under active development. 

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 5E.1

41xx+4dx

Answer

Let u=x+4, then du=dx and x=u4.

Now 41xx+4dx=41u4udu

=41(u4)u12du

=41u124u12du

=(23u32421u12)|x=4x=1

=(23(x+4)328(x+4)12)|x=4x=1

=23(832332)8(812312)

=631632.

Exercise 5E.2

10x3x2+3dx

Answer

Let u=x2+3, then du=2xdx and x2=u3. Now,

10x3x2+3dx=1210x2x2+32xdx

=1210(u3)udu)

=1210(u323u12)du)

=12(25u52321u12)|x=1x=0)

=12(25(x2+3)52321(x2+3)12)|x=1x=0)

=12(25((12+3)52(02+3)52)6((12+3)12(02+3)12)

=63585.

Exercise 5E.3

21xx4+3dx

Answer

Let u=x2, then du=2xdx. Now,

21xx4+3dx=12211u2+3du

=123tan1(u3)|x=2x=1

=123tan1(x23)|x=2x=1

=123(tan1((2)23)tan1(123))

=123(tan1(23)tan1(13))

=123(tan1(23)π6)

=π6tan1(23)123.

Exercise 5E.4

21xex2dx

Answer

Let u=x2, then du=2xdx. Now,

21xex2dx=1221eudu

=12eu|x=2x=1

=12ex2|x=2x=1

=12(e(2)2e1)

=12(e2e1)

=e12e2.

Exercise 5E.5

sin(3x)e1+cos(3x)dx.

Answer

Let u=e(1+cos(3x)), then du=3e(1+cos(3x))sin(3x)dx. Now,

sin(3x)e1+cos(3x)dx=13du=u3+C=e(1+cos(3x))6+C.


This page titled 5E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.

Support Center

How can we help?