Skip to main content
Mathematics LibreTexts

Table of Derivatives

  • Page ID
    10812
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Differentiation Rules

    Sum Rule

    \(\displaystyle \frac {d} {dx} (\textcolor{blue}{f(x)} + \textcolor{brown}{g (x)}) = (\textcolor{blue}{f(x)} + \textcolor{brown}{g (x)}) '= \textcolor{blue}{f'(x)} + \textcolor{brown}{g'(x)} \)

    Constant Multiple Rule \( \displaystyle \frac {d} {dx} (c\textcolor{blue}{f(x)}) = (c\textcolor{blue}{f(x)})'= c\textcolor{blue}{f'(x)} \)
    Product Rule \( \displaystyle \frac {d} {dx} (\textcolor{blue}{f(x)}\textcolor{brown}{g(x)}) = (\textcolor{blue}{f(x)}\textcolor{brown}{g(x)})'= \textcolor{blue}{f'(x)}\textcolor{brown}{g(x)} + \textcolor{blue}{f(x)}\textcolor{brown}{g'(x)} \)
    \( \displaystyle \frac {d} {dx} (\displaystyle \frac {1} {\textcolor{blue}{f(x)}}) = -\displaystyle \frac {\textcolor{blue}{f'(x)}} {(\textcolor{blue}{f(x)})^2} \)
    Quotient Rule \( \displaystyle \frac {d} {dx} \left(\displaystyle \frac {\textcolor{blue}{f(x)}} {\textcolor{brown}{g(x)}} \right) =\left(\displaystyle \frac {\textcolor{blue}{f(x)}} {\textcolor{brown}{g(x)}}\right)'=\displaystyle \frac {\textcolor{brown}{g(x)}\textcolor{blue}{f'(x)} - \textcolor{blue}{f(x)}\textcolor{brown}{g'(x)}} {(\textcolor{brown}{g(x)})^2} \)
    Chain Rule \( \displaystyle \frac {d} {dx} \textcolor{blue}{f(}\textcolor{ brown }{g(x)}\textcolor{blue}{)}= \left(\textcolor{blue}{f(}\textcolor{ brown }{g(x)}\textcolor{blue}{)} \right)'= \textcolor{blue}{f'(}\textcolor{ brown }{g(x)}\textcolor{blue}{)}\textcolor{ brown }{g'(x)} \)

    Derivatives for Elementary Trancendental Functions

    \( \displaystyle \frac {d} {dx} \textcolor{orange}{x}^\textcolor{magenta}{n} = \textcolor{magenta}{n}\textcolor{orange}{x}^{\textcolor{magenta}{n}-1} \)
    \( \displaystyle \frac {d} {dx} e^ \textcolor{orange}{x} = e^ \textcolor{orange}{x} \)
    \( \displaystyle \frac {d} {dx} \textcolor{magenta}{b}^\textcolor{orange}{x} = \textcolor{magenta}{b}^\textcolor{orange}{x}ln(\textcolor{magenta}{b}) \), where \( \, \textcolor{magenta}{b} > 0\)
    \( \displaystyle \frac {d} {dx} \ln(|\textcolor{orange}{x}|) = \displaystyle \frac {1} {\textcolor{orange}{x}} \),\( x \ne 0 \)
    \( \displaystyle \frac {d} {dx} \log_\textcolor{magenta}{b}(|\textcolor{orange}{x}|) = \displaystyle \frac {1} {\textcolor{orange}{x} \, \ln(\textcolor{magenta}{b})} \), \( x \ne 0 \)
    \( \displaystyle \frac {d} {dx} \sin(\textcolor{orange}{x}) = \cos(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \cos(\textcolor{orange}{x}) = -\sin(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \tan(\textcolor{orange}{x}) = \sec^2(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \sec(\textcolor{orange}{x}) = \sec(\textcolor{orange}{x})tan(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \csc(\textcolor{orange}{x}) = -\csc(\textcolor{orange}{x})cot(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \cot(\textcolor{orange}{x}) = -\csc^2(\textcolor{orange}{x}) \)
    \( \displaystyle \frac {d} {dx} \sin^{-1}(\textcolor{orange}{x}) = \displaystyle \frac {1} {\sqrt{1-\textcolor{orange}{x}^2}} \)
    \( \displaystyle \frac {d} {dx} \tan^{-1}(\textcolor{orange}{x}) = \displaystyle \frac {1} {1+\textcolor{orange}{x}^2} \)
    \( \displaystyle \frac {d} {dx} \sec^{-1}(\textcolor{orange}{x})= \displaystyle \frac {1} { |\textcolor{orange}{x}| \,\sqrt{\textcolor{orange}{x}^2-1}} \)
    \( \displaystyle \frac {d} {dx} \cos^{-1}(\textcolor{orange}{x}) =- \displaystyle \frac {1} {\sqrt{1-\textcolor{orange}{x}^2}} \)
    \( \displaystyle \frac {d} {dx} \cot^{-1}(\textcolor{orange}{x})=- \displaystyle \frac {1} {1+\textcolor{orange}{x}^2} \)
    \( \displaystyle \frac {d} {dx} \csc^{-1}(\textcolor{orange}{x}) = - \displaystyle \frac {1} { |\textcolor{orange}{x}| \,\sqrt{\textcolor{orange}{x}^2-1}} \)
    \( \displaystyle \frac {d} {dx} |\textcolor{orange}{x}| = sgn(\textcolor{orange}{x}) = \displaystyle \frac {\textcolor{orange}{x}} {|\textcolor{orange}{x}|} , x \ne 0\)

    Table of Derivatives is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?