Table of limits
( \newcommand{\kernel}{\mathrm{null}\,}\)
Properties of Limits
- Let f(x) and g(x) be defined for all x≠a over some open interval containing a. Assume that L and M are real numbers such that limx→af(x)=L and limx→ag(x)=M. Let c be a constant. Then, each of the following statements holds:
Sum law for limits: limx→a(f(x)+g(x))=limx→af(x)+limx→ag(x)=L+M
Difference law for limits: limx→a(f(x)−g(x))=limx→af(x)−limx→ag(x)=L−M
Constant multiple law for limits: limx→acf(x)=c⋅limx→af(x)=cL
Product law for limits: limx→a(f(x)⋅g(x))=limx→af(x)⋅limx→ag(x)=L⋅M
Quotient law for limits: limx→af(x)g(x)=limx→af(x)limx→ag(x)=LM for M≠0
Power law for limits: limx→a(f(x))n=(limx→af(x))n=Ln for every positive integer n.
Root law for limits: limx→an√f(x)=limx→an√f(x)=n√L for all L if n is odd and for L≥0 if n is even.
Basic Limits
limx→ax=a | limx→ac=c, where c is a constant |
limx→0+1x=+∞ | limx→0−1x=−∞ |
limx→01x2=+∞ | limx→ap(x)=p(a), where p(x) is a polynomial function. |
limx→0+|x|x=+1 | limx→0−|x|x=−1 |
limx→±∞k=k, where k is a constant. |
limx→∞xn=∞, for all n∈N. |
limx→−∞xn=∞, when n is even. | limx→∞xn=−∞, when n is odd. |
limx→±∞anxn+an−1xn−1+…+a1x+a0=limx→±∞anxn. | limx→±∞1xn=0, for all n∈N. |
Trigonometry limits
limx→0sinxx=1 | limx→0sin(1/x) =DNE |
Contributors and Attributions
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.
Pamini Thangarajah (Mount Royal University, Calgary, Alberta, Canada)