Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Table of limits

( \newcommand{\kernel}{\mathrm{null}\,}\)

Properties of Limits

  • Let f(x) and g(x) be defined for all xa over some open interval containing a. Assume that L and M are real numbers such that limxaf(x)=L and limxag(x)=M. Let c be a constant. Then, each of the following statements holds:

    Sum law for limits: limxa(f(x)+g(x))=limxaf(x)+limxag(x)=L+M

    Difference law for limits: limxa(f(x)g(x))=limxaf(x)limxag(x)=LM

    Constant multiple law for limits: limxacf(x)=climxaf(x)=cL

    Product law for limits: limxa(f(x)g(x))=limxaf(x)limxag(x)=LM

    Quotient law for limits: limxaf(x)g(x)=limxaf(x)limxag(x)=LM for M≠0

    Power law for limits: limxa(f(x))n=(limxaf(x))n=Ln for every positive integer n.

    Root law for limits: limxanf(x)=limxanf(x)=nL for all L if n is odd and for L0 if n is even.

Basic Limits

limxax=a limxac=c, where c is a constant
limx0+1x=+ limx01x=
limx01x2=+ limxap(x)=p(a), where p(x) is a polynomial function.
limx0+|x|x=+1 limx0|x|x=1

limx±k=k, where k is a constant.

limxxn=, for all nN.
limxxn=, when n is even. limxxn=, when n is odd.
limx±anxn+an1xn1++a1x+a0=limx±anxn. limx±1xn=0, for all nN.

Trigonometry limits

limx0sinxx=1 limx0sin(1/x) =DNE

Contributors and Attributions

  • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

  • Pamini Thangarajah (Mount Royal University, Calgary, Alberta, Canada)


Table of limits is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?