# 1.2: Exponents and Cancellation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Definition: Inverse

Let $$S$$ be a set with a binary operation $$\star$$, and with identity $$e$$. Let $$a \in S$$, then $$b\in S$$ is called an inverse of $$a$$ if $$a \star b= b \star a=e.$$

Example $$\PageIndex{1}$$:

1. For every $$a \in \mathbb{Z}$$, $$-a$$ is the inverse of $$a$$ with the operation $$+$$.
2. For every $$a \in \mathbb{ R} \setminus \{0\}$$, $$a^{-1}=\frac{1}{a}$$ is the inverse of $$a$$ with the multiplication.

Cancellation law

Let $$S$$ be a set with a binary operation $$\star$$. If for any $$a, b, c \in S$$, $$a \star b= a \star c$$ then $$b=c$$

Example $$\PageIndex{2}$$:

$$(1)(0)=(3)(0)=0$$, but $$1 \ne 3$$.

Example $$\PageIndex{3}$$:

1. For any $$a, b, c \in \mathbb{Z}$$, $$a + b= a + c$$ then $$b=c$$.
2. For any $$a, b,c \in \mathbb{Z}$$ and $$a\ne 0$$, $$a b= a c$$ then $$b=c$$.

Example $$\PageIndex{4}$$:

If $$ab=0$$ then $$a=0$$ or $$b=0$$.

Theorem $$\PageIndex{1}$$

For any integers $$a$$, and $$b$$, the following are true.

1. $$-(-a)=a.$$

2. $$0(a)=0.$$

3. $$(-a)b=-ab.$$

4. $$(-a)(-b)=ab.$$

Proof

1. Let $$a \in \mathbb{Z}$$. Since $$-a$$ is the inverse of $$a$$, $$a+(-a)=(-a)+a=0$$. Therefore the additive inverse of $$-a$$ is $$a$$.

Thus $$-(-a)=a.$$

2. Let $$a \in \mathbb{Z}$$. Then by distributive law, $$0a+0a=(0+0)a=0a=0a+0.$$ Now by cancelations law, $$0a=0$$.

3. Let $$a, b \in \mathbb{Z}$$. By distributive law, $$((-a)+a)b=(-a)b+ab.$$ Since $$-a$$ is the additive inverse of $$a$$, $$(-a)+a=0$$. By (2), $$0=(-a)b+ab.$$ Thus $$(-a)b$$ is the additive inverse of $$ab$$. Hence $$-ab= (-a)b$$.

4. Let $$a, b \in \mathbb{Z}$$. Since $$(-a)(-b)+(-a)b=(-a)(-b+b)=(-a)(0)=0.$$ Hence $$(-a)(-b)$$ is the additive inverse of $$(-a)b$$. But $$ab$$ is the additive inverse of $$-ab$$. Thus by (3), we have $$(-a)(-b)=ab.$$.

Definition: Exponentiation

For every $$a, n \in \mathbb{Z_+}$$, the binary operation exponentiation is denoted as $$a^n$$, defined as $$n$$ copies of $$a$$.

Example $$\PageIndex{5}$$:

$$2^3=8$$

Example $$\PageIndex{6}$$:

1. Determine whether the exponentiation is associative?
2. Determine whether the exponentiation is commutative?

Solution

1. Since $$(3^2)^3= 9^3$$ is not the same as $$3^{2^3}= 3^8$$, the exponentiation is not associative.
2. Since $$3^2= 9$$ is not the same as $$2^3= 8$$, the exponentiation is not commutative.

Theorem $$\PageIndex{2}$$

The exponentiation is distributive over multiplication. That is $$(ab)^n=a^nb^n, \forall a, b, n \in \mathbb{Z}$$.

Proof

Since multiplication is associative, the result follows.

Example $$\PageIndex{7}$$:

Prove that $$a^m a^n= a^{m+n}, \forall a, m, n \in \mathbb{Z}$$.

Example $$\PageIndex{8}$$:

Prove that $$(a^m)^n = a^{mn}, \forall a, m, n \in \mathbb{Z}$$.

This page titled 1.2: Exponents and Cancellation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.