1.1: Binary operations
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}Binary operation
Definition: Binary operation
Let S be a non-empty set, and \star said to be a binary operation on S, if a \star b is defined for all a,b \in S. In other words, \star is a rule for any two elements in the set S.
Example \PageIndex{1}:
The following are binary operations on \mathbb{Z}:
- The arithmetic operations, addition +, subtraction -, multiplication \times , and division \div .
- Define an operation oplus on \mathbb{Z} by a \oplus b =ab+a+b, \forall a,b \in\mathbb{Z}.
- Define an operation ominus on \mathbb{Z} by a \ominus b =ab+a-b, \forall a,b \in\mathbb{Z}.
- Define an operation otimes on \mathbb{Z} by a \otimes b =(a+b)(a+b), \forall a,b \in\mathbb{Z}.
- Define an operation oslash on \mathbb{Z} by a \oslash b =(a+b)(a-b), \forall a,b \in\mathbb{Z} .
- Define an operation min on \mathbb{Z} by a \vee b =\min \{a,b\}, \forall a,b \in\mathbb{Z}.
- Define an operation max on \mathbb{Z} by a \wedge b =\max \{a,b\}, \forall a,b \in\mathbb{Z}.
- Define an operation defect on \mathbb{Z} by a \ast_3 b = a+b-3, \forall a,b \in\mathbb{Z}.
Lets explore the binary operations, before we proceed:
Example \PageIndex{2}:
- 2 \oplus 3=(2)(3)+2+3=11.
- 2 \otimes 3=(2+3)(2+3)=25.
- 2 \oslash 3=(2+3)(2-3)=-5.
- 2 \ominus 3=(2)(3)+2-3=5.
- 2 \vee 3= 2.
- 2 \wedge 3 =3.
Exercise \PageIndex{2}
- -2 \oplus 3.
- -2 \otimes 3.
- -2 \oslash 3.
- -2 \ominus 3.
- -2 \vee 3.
- -2 \wedge 3 .
- Answer
-
-5, 1,-5,-2,3
Properties:
Closure property
Definition: Closure
Let S be a non-empty set. A binary operation \star on S is said to be a closed binary operation on S, if a \star b \in S, \forall a, b \in S.
Below we shall give some examples of closed binary operations, that will be further explored in class.
Example \PageIndex{3}: Closed binary operations
The following are closed binary operations on \mathbb{Z}.
- The addition +, subtraction -, and multiplication \times .
- Define an operation oplus on \mathbb{Z} by a \oplus b =ab+a+b, \forall a,b \in\mathbb{Z}.
- Define an operation ominus on \mathbb{Z} by a \ominus b =ab+a-b, \forall a,b \in\mathbb{Z}.
- Define an operation otimes on \mathbb{Z} by a \otimes b =(a+b)(a+b), \forall a,b \in\mathbb{Z}.
- Define an operation oslash on \mathbb{Z} by a \oslash b =(a+b)(a-b), \forall a,b \in\mathbb{Z} .
- Define an operation min on \mathbb{Z} by a \vee b =\min \{a,b\}, \forall a,b \in\mathbb{Z}.
- Define an operation max on \mathbb{Z} by a \wedge b =\max \{a,b\}, \forall a,b \in\mathbb{Z}.
- Define an operation defect on \mathbb{Z} by a \ast_3 b = a+b-3, \forall a,b \in\mathbb{Z}.
Exercise \PageIndex{1}
Determine whether the operation ominus on \mathbb{Z_+} is closed?
- Answer
-
The operation ominus on \mathbb{Z_+} is closed.
Example \PageIndex{4}: Counter Example
Division ( \div ) is not a closed binary operations on \mathbb{Z}.
2, 3 \in \mathbb{Z} but \frac{2}{3} \notin \mathbb{Z} .
Summary of arithmetic operations and corresponding sets:
+ | \times | - | \div | |
\mathbb{Z_+} | closed | closed | not closed | not closed |
\mathbb{Z} | closed | closed | closed | not closed |
\mathbb{Q} | closed | closed | closed | closed (only when 0 is not included) |
\mathbb{R} | closed | closed | closed | closed (only when 0 is not included) |
Associative property
Definition: Associative
Let S be a subset of \mathbb{Z}. A binary operation \star on S is said to be associative , if (a \star b) \star c = a \star (b \star c) , \forall a, b,c \in S.
We shall assume the fact that the addition (+) and the multiplication ( \times ) are associative on \mathbb{Z_+}. (You don't need to prove them!).
Below is an example of proof when the statement is True.
Example \PageIndex{5}: Associative
Determine whether the binary operation oplus is associative on \mathbb{Z}.
We shall show that the binary operation oplus is associative on \mathbb{Z}.
- Proof:
-
Let a,b,c \in \mathbb{Z}. Then consider, (a \oplus b) \oplus c = (ab+a+b) \oplus c = (ab+a+b)c+(ab+a+b)+c= (ab)c+ac+bc+ab+a+b+c.
On the other hand, a \oplus (b \oplus c)=a \oplus (bc+b+c)= a(bc+b+c)+a+(bc+b+c)=a(bc)+ab+ac+a+bc+b+c.
Since multiplication is associative on \mathbb{Z}, (a \oplus b) \oplus c =a \oplus (b \oplus c).
Thus, the binary operation oplus is associative on \mathbb{Z}. \Box
Below is an example of how to disprove when a statement is False.
Example \PageIndex{6}: Not Associative
Determine whether the binary operation subtraction ( -) is associative on \mathbb{Z}.
Answer: The binary operation subtraction ( -) is not associative on \mathbb{Z}.
- Counterexample:
-
Choose a=2,b=3, c=4, then (2-3)-4=-1-4=-5 , but 2-(3-4)=2-(-1)=2+1=3.
Hence the binary operation subtraction ( -) is not associative on \mathbb{Z}.
Commutative property
Definition: Commutative property
Let S be a non-empty set. A binary operation \star on S is said to be commutative, if a \star b = b \star a,\forall a, b \in S.
We shall assume the fact that the addition (+) and the multiplication( \times ) are commutative on \mathbb{Z_+}. (You don't need to prove them!).
Below is the proof of subtraction ( -) NOT being commutative.
Example \PageIndex{7}: NOT Commutative
Determine whether the binary operation subtraction - is commutative on \mathbb{Z}.
- Counterexample:
-
Choose a=3 and b=4.
Then a-b=3-4=-1, and b-a= 4-3=1.
Hence the binary operation subtraction - is not commutative on \mathbb{Z}.
Example \PageIndex{8}: Commutative
Determine whether the binary operation oplus is commutative on \mathbb{Z}.
We shall show that the binary operation oplus is commutative on \mathbb{Z}.
- Proof:
-
Let a,b \in \mathbb{Z}.
Then consider, (a \oplus b) = (ab+a+b).
On the other hand, (b \oplus a) = ba+b+a.
Since multiplication is associative on \mathbb{Z}, (a \oplus b) = (b \oplus a).
Thus, the binary operation oplus is commutative on \mathbb{Z}. \Box
Identity
Definition: Identity
A non-empty set S with binary operation \star , is said to have an identity e \in S, if e \star a=a\star e=a, \forall a \in S.
Note that 0 is called additive identity on ( \mathbb{Z}, +), and 1 is called multiplicative identity on ( \mathbb{Z}, \times ).
Example \PageIndex{9}: Is identity unique?
Let S be a non-empty set and let \star be a binary operation on S. If e_1 and e_2 are two identities in (S,\star) , then e_1=e_2.
Proof:
Suppose that e_1 and e_2 are two identities in (S,\star) .
Then e_1=e_1 \star e_2=e_2.
Hence identity is unique. \Box
Example \PageIndex{10}: Identity
Does ( \mathbb{Z}, \oplus ) have an identity?
- Answer
-
Let e be the identity on ( \mathbb{Z}, \oplus ).
Then e \oplus a=a\oplus e=a, \forall a \in \mathbb{Z}.
Thus ea+e+a=a, and ae+a+e=a \forall a \in \mathbb{Z}.
Since ea+e+a=a \forall a \in \mathbb{Z}, ea+e=0 \implies e(a+1)=0 \forall a \in \mathbb{Z}.
Therefore e=0.
Now 0 \oplus a=a\oplus 0=a, \forall a \in \mathbb{Z}.
Hence 0 is the identity on ( \mathbb{Z}, \oplus ).
Example \PageIndex{11}:
Does ( \mathbb{Z}, \otimes ) have an identity?
- Answer
-
Let e be the identity on ( \mathbb{Z}, \otimes ).
Then e \otimes a=a \otimes e=a, \forall a \in \mathbb{Z}.
Thus (e+a)(e+a)=(a+e)(a+e) =a, \forall a \in \mathbb{Z}.
Now, (a+e)(a+e) =a,\forall a \in \mathbb{Z}.
\implies a^2+2ea+e^2=a,\forall a \in \mathbb{Z}.
Choose a=0 then e=0.
If e=0 then a^2=a,\forall a \in \mathbb{Z}.
This is a contradiction. Thus e=0 is not an identity. Hence e\ne 0.
Choose a=1. Then 2e+e^2=0 \imples e(2+e)=0. Since e\ne 0, e=-2 This will not work for a=0.
For any other values of e will not work a=0.
Hence, ( \mathbb{Z}, \otimes ) has no identity.
Distributive Property
Definition: Distributive property
Let S be a non-empty set. Let \star_1 and \star_2 be two different binary operations on S.
Then \star_1 is said to be distributive over \star_2 on S if a \star_1 (b \star_2 c)= (a\star_1 b) \star_2 (a \star_1 c), \forall a,b,c,\in S .
Note that the multiplication distributes over the addition on \mathbb{Z}. That is, 4(10+6)=(4)(10)+(4)(6)=40+24=64.
Further, we extend to (a+b)(c+d) =ac+ad+bc+bd (FOIL).
F-First
O-Outer
I-Inner
L-Last
This property is very useful to find (26)(27) as shown below:
Example \PageIndex{12}: Find (26)(27)
20 | 6 | |
---|---|---|
20 | 400 | 120 |
7 | 140 | 42 |
Hence (26)(27) =400+120+140+42=702.
Let's play a game!
Example \PageIndex{13}:
Does multiplication distribute over subtraction?
Example \PageIndex{14}:
Does division distribute over addition?
- Answer
-
Counterexample:
Choose a = 2, b = 3, and c = 4.
Then a \div (b + c) = 2 \div(3+4)
= 2 \div 7.
= \frac{2}{7}.
and (a \div b) + (a \div c) = \frac{2}{3} + \frac{2}{4}.
= \frac{7}{6}.
Since \frac{2}{7} \ne \frac{7}{6}, the binary operation \div is not distributive over +.
Example \PageIndex{15}:
Does \otimes distribute over \oplus on \mathbb{Z} ?
- Answer
-
Counterexample:
Choose a = 2, b = 3, and c = 4.
Then 2\otimes (3 \oplus 4) = 2\otimes [(3)(4)+3+4]
= 2\otimes 19
= (2+19)(2+19)
= 441
and (2\otimes 3)\oplus (2 \otimes 4)=[(2+3)(2+3)] \oplus [(2+4)(2+4)]
= 25 \oplus 36
= (25)(36)+25+36
= 961.
Since 441 \ne 961, the binary operation \otimes is not distributive over \oplus on \mathbb{Z}.
Summary
In this section, we have learned the following for a non-empty set S:
- Binary operation,
- Closure property,
- Associative property,
- Commutative property,
- Distributive property, and
- Identity.