Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.3: Divisibility rules revisited

( \newcommand{\kernel}{\mathrm{null}\,}\)

Thinking out Loud

Can any integer n be written as a sum of distinct powers of 2?

Example 3.3.1:

Express 2019 as a sum of distinct powers of 2?

Note that, 101(mod3),101(mod9), and 10(1)(mod11),.

Let xZ+.

Then x=dn10n+dn110n1++d2102+d1101+d0,

which implies

x=10(dn10n1+dn110n2++d210+d1)+d0.

Thus we can express x as 10a+b, where b=d0 is the ones digit of x, and a=dn10n1+dn110n2++d210+d1.

Divisibility by 2=21:

Let x=dn10n+dn110n1++d2102+d1101+d0Z+, then 2x iff 2d0. In other words, 2 divides an integer iff the ones digit of the integer is either 0,2,4,6, or 8. That is. x0(mod2) iff d00(mod2).

Proof:

Since 100(mod2) and x=10a+b, x0(mod2) iff d00(mod2).

Divisibility by 5:

Let x=dn10n+dn110n1++d2102+d1101+d0Z+, then 5x iff 5d0. In other words, 5 divides an integer iff the ones digit of the integer is either 0, or 5.

That is. x0(mod5) iff d00(mod5).

Proof:

Since 100(mod5) and x=10a+b, x0(mod5) iff d00(mod5).

Divisibility by 10:

Let x=dn10n+dn110n1++d2102+d1101+d0Z+, then 10x iff 10d0. In other words, 10 divides an integer iff the ones digit of the integer is 0,.

That is. x0(mod10) iff d00(mod10).

Proof:

Since 100(mod10) and x=10a+b, x0(mod10) iff d00(mod10).

Divisibility by 4=22:

Let x=dn10n+dn110n1++d2102+d1101+d0Z+, then 4x iff 4d1d0. That is. x0(mod4) iff d1d00(mod4).

Proof:

Let x be an integer. Then

x=dn10n+dn110n1++d2102+d1101+d0, which implies

x=100(dn10n2+dn110n3++d2)+10d1+d0=100(dn10n2+dn110n3++d2)+d1d0.

Since 1000(mod4), x=100a+d1d0, x0(mod4) iff d1d00(mod4).

Divisibility by 8=23:

Let x=dn10n+dn110n1++d2102+d1101+d0Z+, then 8x iff 8d2d1d0. That is. x0(mod8) iff d2d1d00(mod8).

Proof:

Let x be an integer. Then

x=dn10n+dn110n1++d2102+d1101+d0, which implies

x=103(dn10n3+dn110n4++d3)+100d2+10d1+d0=103(dn10n3+dn110n4++d3)+d2d1d0.

Since 10000(mod8), x=1000a+d2d1d0, x0(mod8) iff d2d1d00(mod8).

A similar argument can be made for divisibility by 2n, for any positive integer n. The following results follows from the fact that,

x=dn10n+dn110n1++d2102+d1101+d0=dn(10n1)+dn1(10n11)++d2(1021)+d1(1011)+(dn+dn1++d1+d0).

Divisibility by 3:

Let x=dn10n+dn110n1++d2102+d1101+d0Z+, then 3x iff 3 divides sum of its digits.

Proof:

Let x be an integer. Then

x=dn10n+dn110n1++d2102+d1101+d0, which implies x=dn(10n1)+dn1(10n11)++d2(1021)+d1(1011)+(dn+dn1++d1+d0).

Hence, x(mod3)dn(10n1)+dn1(10n11)++d2(1021)+d1(1011))(mod3)+(dn+dn1++d1+d0)(mod3).  Notice that (10n1)0(mod3), for all positive integer n.

Therefore, x(mod3)(dn+dn1++d1+d0)(mod3).

 Thus, 3x iff 3 divides sum of its digits.

 

Divisibility by 9=32:

Let x=dn10n+dn110n1++d2102+d1101+d0Z+, then 9x iff 9 divides sum of its digits.

Proof:

Let x be an integer. Then

x=dn10n+dn110n1++d2102+d1101+d0, which implies x=dn(10n1)+dn1(10n11)++d2(1021)+d1(1011)+(dn+dn1++d1+d0).

Hence, x(mod9)dn(10n1)+dn1(10n11)++d2(1021)+d1(1011))(mod9)+(dn+dn1++d1+d0)(mod9).  Notice that (10n1)0(mod9), for all positive integer n.

Therefore, x(mod9)(dn+dn1++d1+d0)(mod9).

 Thus, 9x iff 9 divides sum of its digits.

Divisibility by 7:

7x iff 7 divides the absolute difference between a2b, where x=10a+b, and, b=d0 is the ones digit of x and a=dn10n1+dn110n2++d210+d1.

Proof:

Divisibility by 11:

11x iff 11 divides the absolute difference between alternate sum.

Proof:


This page titled 3.3: Divisibility rules revisited is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

Support Center

How can we help?