Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

4.5E: Exercises

This page is a draft and is under active development. 

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise \PageIndex{1}

1. How are the definite and indefinite integrals related?

2. What constants of integration is most commonly used when evaluating definite integrals?

3. T/F: If f is a continuous function, then F(x) =\int_a^x f(t)\,dt is also a continuous function.

4. The definite integral can be used to find "the area under a curve." Give two other uses for definite integrals.

Answer

Under Construction

Exercise \PageIndex{2}

Evaluate the definite integrals

1. \int_1^3 (3x^2-2x+1)\,dx

2. \int_0^4 (x-1)^2\,dx

3. \int_{-1}^1 (x^3-x^5)\,dx

4. \int_{\pi/2}^{\pi}\cos x\,dx

5. \int_0^{\pi/4}\sec^2 x\,dx

6. \int_1^e \frac{1}{x}\,dx

7. \int_{-1}^1 5^x \,dx

8. \int_{-2}^{-1}(4-2x^3)\,dx

9. \int_0^{\pi}(2\cos x -2\sin x)\,dx

10. \int_1^3 e^x\,dx

11. \int_0^4 \sqrt{t}\,dt

12. \int_9^{25} \frac{1}{\sqrt{t}}\,dt

13. \int_1^8 \sqrt[3]{x}\,dx

14. \int_1^2 \frac{1}{x}\,dx

15. \int_1^2 \frac{1}{x^2}\,dx

16. \int_1^2 \frac{1}{x^3}\,dx

17. \int_0^1 x\,dx

18. \int_0^1 x^2\,dx

19. \int_0^1 x^3\,dx

20. \int_0^1 x^{100}\,dx

21. \int_{-4}^4 dx

22. \int_{-10}^{-5} 3\,dx

23. \int_{-2}^2 0\,dx

24. \int_{\pi/6}^{\pi/3}\csc x \cot x\,dx

Answer

Under Construction

Exercise \PageIndex{3}

29. Explain why:
(a) \int_{-1}^1 x^n\,dx=0, when n is a positive, odd integer, and
(b) \int_{-1}^1x^n\,dx =2\int_0^1 x^n \,dx when n is a positive, even integer.

Answer

Under Construction

Exercise \PageIndex{4}

Find a value c guaranteed by the Mean Value Theorem.

1. \int_0^2 x^2\,dx

2. \int_{-2}^2 x^2\,dx

3. \int_0^1 e^x\,dx

4. \int_0^16 \sqrt{x}\,dx

Answer

Under Construction

Exercise \PageIndex{5}

Find the average value of the function on the given interval.

1. f(x) =\sin x \text{ on }[0,\pi/2]

2. y =\sin x \text{ on }[0,\pi]

3. y = x \text{ on }[0,4]

4. y =x^2 \text{ on }[0,4]

5. y =x^3 \text{ on }[0,4]

6. g(t) =1/t \text{ on }[1,e]

Answer

Under Construction

Exercise \PageIndex{6}

A velocity function of an object moving along a straight line is given. Find the displacement of the object over the given time interval.

1. v(t) =-32t+20ft/s on [0,5].

2. v(t) =-32t+200ft/s on [0,10].

3. v(t) =2^tmph on [-1,1].

4. v(t) =\cos tft/s on [0,3\pi /2].

5. v(t) =\sqrt[4]{t}ft/s on [0,16].

Answer

Under Construction

Exercise \PageIndex{7}

An acceleration function of an object moving along a straight line is given. Find the change of the object's velocity over the given time interval.

1. a(t) =-32ft/s on [0,2].

2. a(t) =10ft/s on [0,5].

3. a(t) =tft/s^2 on [0,2].

4. a(t) =\cos tft/s^2 on [0,\pi].

Answer

Under Construction

Exercise \PageIndex{8}

Sketch the given functions and find the area of the enclosed region.

1. y =2x,\, y=5x,\text{ and }x=3.

2. y=-x+1,\,y=3x+6,\,x=2\text{ and }x=-1.

3. y=x^2-2x+5,\,y=5x-5.

4. y = 2x^2+2x-5,\,y=x^2+3x+7.

Answer

Under Construction

Exercise \PageIndex{9}

Find F'(x).

1. F(x) =\int_2^{x^3+x}\frac{1}{t}\,dt

2. F(x) = \int_{x^3}^0 t^3\,dt

3. F(x)=\frac{x}{x^2}(t+2)\,dt

4. F(x) =\int_{\ln x}^{e^x}\sin t\,dt

Answer

Under Construction


4.5E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?