4.5E: Exercises
This page is a draft and is under active development.
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise \PageIndex{1}
1. How are the definite and indefinite integrals related?
2. What constants of integration is most commonly used when evaluating definite integrals?
3. T/F: If f is a continuous function, then F(x) =\int_a^x f(t)\,dt is also a continuous function.
4. The definite integral can be used to find "the area under a curve." Give two other uses for definite integrals.
- Answer
-
Under Construction
Exercise \PageIndex{2}
Evaluate the definite integrals
1. \int_1^3 (3x^2-2x+1)\,dx
2. \int_0^4 (x-1)^2\,dx
3. \int_{-1}^1 (x^3-x^5)\,dx
4. \int_{\pi/2}^{\pi}\cos x\,dx
5. \int_0^{\pi/4}\sec^2 x\,dx
6. \int_1^e \frac{1}{x}\,dx
7. \int_{-1}^1 5^x \,dx
8. \int_{-2}^{-1}(4-2x^3)\,dx
9. \int_0^{\pi}(2\cos x -2\sin x)\,dx
10. \int_1^3 e^x\,dx
11. \int_0^4 \sqrt{t}\,dt
12. \int_9^{25} \frac{1}{\sqrt{t}}\,dt
13. \int_1^8 \sqrt[3]{x}\,dx
14. \int_1^2 \frac{1}{x}\,dx
15. \int_1^2 \frac{1}{x^2}\,dx
16. \int_1^2 \frac{1}{x^3}\,dx
17. \int_0^1 x\,dx
18. \int_0^1 x^2\,dx
19. \int_0^1 x^3\,dx
20. \int_0^1 x^{100}\,dx
21. \int_{-4}^4 dx
22. \int_{-10}^{-5} 3\,dx
23. \int_{-2}^2 0\,dx
24. \int_{\pi/6}^{\pi/3}\csc x \cot x\,dx
- Answer
-
Under Construction
Exercise \PageIndex{3}
29. Explain why:
(a) \int_{-1}^1 x^n\,dx=0, when n is a positive, odd integer, and
(b) \int_{-1}^1x^n\,dx =2\int_0^1 x^n \,dx when n is a positive, even integer.
- Answer
-
Under Construction
Exercise \PageIndex{4}
Find a value c guaranteed by the Mean Value Theorem.
1. \int_0^2 x^2\,dx
2. \int_{-2}^2 x^2\,dx
3. \int_0^1 e^x\,dx
4. \int_0^16 \sqrt{x}\,dx
- Answer
-
Under Construction
Exercise \PageIndex{5}
Find the average value of the function on the given interval.
1. f(x) =\sin x \text{ on }[0,\pi/2]
2. y =\sin x \text{ on }[0,\pi]
3. y = x \text{ on }[0,4]
4. y =x^2 \text{ on }[0,4]
5. y =x^3 \text{ on }[0,4]
6. g(t) =1/t \text{ on }[1,e]
- Answer
-
Under Construction
Exercise \PageIndex{6}
A velocity function of an object moving along a straight line is given. Find the displacement of the object over the given time interval.
1. v(t) =-32t+20ft/s on [0,5].
2. v(t) =-32t+200ft/s on [0,10].
3. v(t) =2^tmph on [-1,1].
4. v(t) =\cos tft/s on [0,3\pi /2].
5. v(t) =\sqrt[4]{t}ft/s on [0,16].
- Answer
-
Under Construction
Exercise \PageIndex{7}
An acceleration function of an object moving along a straight line is given. Find the change of the object's velocity over the given time interval.
1. a(t) =-32ft/s on [0,2].
2. a(t) =10ft/s on [0,5].
3. a(t) =tft/s^2 on [0,2].
4. a(t) =\cos tft/s^2 on [0,\pi].
- Answer
-
Under Construction
Exercise \PageIndex{8}
Sketch the given functions and find the area of the enclosed region.
1. y =2x,\, y=5x,\text{ and }x=3.
2. y=-x+1,\,y=3x+6,\,x=2\text{ and }x=-1.
3. y=x^2-2x+5,\,y=5x-5.
4. y = 2x^2+2x-5,\,y=x^2+3x+7.
- Answer
-
Under Construction
Exercise \PageIndex{9}
Find F'(x).
1. F(x) =\int_2^{x^3+x}\frac{1}{t}\,dt
2. F(x) = \int_{x^3}^0 t^3\,dt
3. F(x)=\frac{x}{x^2}(t+2)\,dt
4. F(x) =\int_{\ln x}^{e^x}\sin t\,dt
- Answer
-
Under Construction