0.1: Sets
- Page ID
- 131016
Sets
-
Sets are collections of objects,
-
Sets are normally denoted by capital letters.
-
Elements are denoted by lower-case letters.
-
Subsets:
-
Every element of B is an element of A, written as \( B\subset A.\)
-
\(B=\{a \in A:\) …..condition on okay!.
-
Trivial subsets of \(A\) are \(A\) and \(\emptyset \) (empty set).
-
-
How do we test if an element belongs to a set?
Example \(\PageIndex{1}\)
\(M_{22}(\mathbb{R}):=\) set of all 2 x 2 matrices with real numbers, where \(\mathbb{R}:=\) set of all real numbers.
Let \(A=\big{\{}\begin{bmatrix}x\end{bmatrix} \in M_{22}(\mathbb{R})|\begin{bmatrix}x\end{bmatrix}\begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}1 &1\\
0 &1\end{bmatrix}\begin{bmatrix}x\end{bmatrix}\big{\}}\).
Determine whether the following entries belong to \(A\).
-
\(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix}\) does not belong to \(A\).
- Answer
-
\(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}1 &1\\
0 &0\end{bmatrix}\) and\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix}=\begin{bmatrix}1 &0\\
0 &0\end{bmatrix}\)Since \(\begin{bmatrix}1 &1\\
0 &0\end{bmatrix} \ne \begin{bmatrix}1 &0\\
0 &0\end{bmatrix}\), \(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix} \notin A\).◻
-
\(\begin{bmatrix}0 & 1\\
0 & 0\end{bmatrix}\) does belong to \(A\).
- Answer
-
\(\begin{bmatrix}0 & 1\\
0 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}0 &1
0 &0\end{bmatrix}\)\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 1\\
0 & 0\end{bmatrix}=\begin{bmatrix}0 &1\\
0 &0\end{bmatrix}\)Since \(\begin{bmatrix}0 &1\\
0 &0\end{bmatrix} = \begin{bmatrix}0 &1\\
0 &0\end{bmatrix}\), \(\begin{bmatrix}1 & 0\\
0 & 0\end{bmatrix} \in A\).◻
-
\(\begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix}\) does not belong to \(A\).
- Answer
-
\(\begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}0 &0\\
1 &1\end{bmatrix}\)\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix}=\begin{bmatrix}1 &0\\
1 &0\end{bmatrix}\)Since \(\begin{bmatrix}0 &0\\
1 &1\end{bmatrix} \ne \begin{bmatrix}1 &0\\
1 &0\end{bmatrix}\), \(\begin{bmatrix}0 & 0\\
1 & 0\end{bmatrix} \notin A\).◻
-
\(\begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix}\) does not belong to \(A\).
- Answer
-
\(\begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
0 &1\end{bmatrix}=\begin{bmatrix}0 &0\\
0 &1\end{bmatrix}\)\(\begin{bmatrix}1 &1\\
0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix}=\begin{bmatrix}0 &1\\
0 &1\end{bmatrix}\)Since \(\begin{bmatrix}0 &0\\
0 &1\end{bmatrix} \ne \begin{bmatrix}0 &1\\
0 &1\end{bmatrix}\), \(\begin{bmatrix}0 & 0\\
0 & 1\end{bmatrix} \notin A\).◻
-
\(\begin{bmatrix}0 & 0\\
0 & 0\end{bmatrix}\). does belong to \(A\).
Solution
This one is obviously true, thus \(\begin{bmatrix}0 & 0\\
0 & 0\end{bmatrix} \in A\).
-
\(\cup\) or / union
-
\(\cap\) and / intersection
-
\(\{\}^c\) complement of a set (aka \(\{\}^{'}\)).
-
\(A \backslash B\) is equivalent to \(A \cap B^{'}\).
-
\(\mathbb{Z}=\) set of all integers \(=\{\ldots,-2,-1,0,1,2,\ldots\}\). A countable set.
-
\(\mathbb{Q}=\) set of all rational numbers \(=\{\frac{a}{b}: a,b \in \mathbb{Z}, b \ne 0 \}\). A countable set.
-
\(\mathbb{Q}^c=\) set of all irrational numbers \(=\{\pm e, \pm \pi, \pm \sqrt{2}, \ldots\}\). Not a countable set.
-
\(\mathbb{R}=\) set of all real numbers \(=\mathbb{Q} \cup \mathbb{Q}^c\). Note \(\mathbb{Q} \cap \mathbb{Q}^c=\emptyset\). Not a countable set.
-
\(\mathbb{C}=\) set of all complex numbers.
-
\(M_{mn}(\mathbb{R}):=\) set of all \(m \times n\) matrices over real numbers.
-
\(M_{mn}(\mathbb{C}):=\) set of all \(m \times n\) matrices over complex numbers.
-
The cardinality of a set \(A\) is written as \(|A|\).
\(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}\).
Example \(\PageIndex{3}\)
Let \(A=\{1,2,3,5\}\). Therefore \(|A|=4\). In this case, \(A\) is called a finite set.