Skip to main content
Mathematics LibreTexts

0.1: Sets

  • Page ID
    131016
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    SetsScreen Shot 2023-06-27 at 12.52.27 PM.png

    • Sets are collections of objects,

    • Sets are normally denoted by capital letters.

    • Elements are denoted by lower-case letters.

    • Subsets:  

      • Every element of B is an element of A, written as \( B\subset A.\)

      • \(B=\{a \in A:\) …..condition on okay!. 

      • Trivial subsets of \(A\) are \(A\) and \(\emptyset \) (empty set).

    • How do we test if an element belongs to a set?

    Example \(\PageIndex{1}\)

    \(M_{22}(\mathbb{R}):=\) set of all 2 x 2 matrices with real numbers, where \(\mathbb{R}:=\) set of all real numbers.

    Let  \(A=\big{\{}\begin{bmatrix}x\end{bmatrix} \in M_{22}(\mathbb{R})|\begin{bmatrix}x\end{bmatrix}\begin{bmatrix}1 &1\\
    0 &1\end{bmatrix}=\begin{bmatrix}1 &1\\
    0 &1\end{bmatrix}\begin{bmatrix}x\end{bmatrix}\big{\}}\).

     

    Determine whether the following entries belong to \(A\).

     

    1. \(\begin{bmatrix}1 & 0\\
      0 & 0\end{bmatrix}\) does not belong to \(A\).

    Answer

    \(\begin{bmatrix}1 & 0\\
    0 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
    0 &1\end{bmatrix}=\begin{bmatrix}1 &1\\
    0 &0\end{bmatrix}\) and

    \(\begin{bmatrix}1 &1\\
    0 &1\end{bmatrix} \cdot \begin{bmatrix}1 & 0\\
    0 & 0\end{bmatrix}=\begin{bmatrix}1 &0\\
    0 &0\end{bmatrix}\)

    Since \(\begin{bmatrix}1 &1\\
    0 &0\end{bmatrix} \ne \begin{bmatrix}1 &0\\
    0 &0\end{bmatrix}\), \(\begin{bmatrix}1 & 0\\
    0 & 0\end{bmatrix} \notin A\).◻

     

    1. \(\begin{bmatrix}0 & 1\\
      0 & 0\end{bmatrix}\) does belong to \(A\).

    Answer

    \(\begin{bmatrix}0 & 1\\
    0 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
    0 &1\end{bmatrix}=\begin{bmatrix}0 &1
    0 &0\end{bmatrix}\)

    \(\begin{bmatrix}1 &1\\
    0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 1\\
    0 & 0\end{bmatrix}=\begin{bmatrix}0 &1\\
    0 &0\end{bmatrix}\)

    Since \(\begin{bmatrix}0 &1\\
    0 &0\end{bmatrix} = \begin{bmatrix}0 &1\\
    0 &0\end{bmatrix}\), \(\begin{bmatrix}1 & 0\\
    0 & 0\end{bmatrix} \in A\).◻

    1. \(\begin{bmatrix}0 & 0\\
      1 & 0\end{bmatrix}\) does not belong to \(A\).

    Answer

    \(\begin{bmatrix}0 & 0\\
    1 & 0\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
    0 &1\end{bmatrix}=\begin{bmatrix}0 &0\\
    1 &1\end{bmatrix}\)

    \(\begin{bmatrix}1 &1\\
    0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 0\\
    1 & 0\end{bmatrix}=\begin{bmatrix}1 &0\\
    1 &0\end{bmatrix}\)

    Since \(\begin{bmatrix}0 &0\\
    1 &1\end{bmatrix} \ne \begin{bmatrix}1 &0\\
    1 &0\end{bmatrix}\), \(\begin{bmatrix}0 & 0\\
    1 & 0\end{bmatrix} \notin A\).◻

    1. \(\begin{bmatrix}0 & 0\\
      0 & 1\end{bmatrix}\) does not belong to \(A\).

    Answer

    \(\begin{bmatrix}0 & 0\\
    0 & 1\end{bmatrix} \cdot \begin{bmatrix}1 &1\\
    0 &1\end{bmatrix}=\begin{bmatrix}0 &0\\
    0 &1\end{bmatrix}\)

    \(\begin{bmatrix}1 &1\\
    0 &1\end{bmatrix} \cdot \begin{bmatrix}0 & 0\\
    0 & 1\end{bmatrix}=\begin{bmatrix}0 &1\\
    0 &1\end{bmatrix}\)

    Since \(\begin{bmatrix}0 &0\\
    0 &1\end{bmatrix} \ne \begin{bmatrix}0 &1\\
    0 &1\end{bmatrix}\), \(\begin{bmatrix}0 & 0\\
    0 & 1\end{bmatrix} \notin A\).◻

    1. \(\begin{bmatrix}0 & 0\\
      0 & 0\end{bmatrix}\).  does belong to \(A\).

    Solution

    This one is obviously true, thus \(\begin{bmatrix}0 & 0\\
    0 & 0\end{bmatrix} \in A\).

    Notations:
    • \(\cup\) or / union

    • \(\cap\) and / intersection

    • \(\{\}^c\) complement of a set (aka \(\{\}^{'}\)).

    • \(A \backslash B\) is equivalent to \(A \cap B^{'}\).

    • \(\mathbb{Z}:=\) set of all integers \(=\{\ldots,-2,-1,0,1,2,\ldots\}\).  A countable set.

    • \(\mathbb{Q}:=\) set of all rational numbers \(=\{\frac{a}{b}: a,b \in \mathbb{Z}, b \ne 0 \}\).   A countable set.

    • \(\mathbb{Q}^c:=\)  set of all irrational numbers \(=\{\pm e, \pm \pi, \pm \sqrt{2}, \ldots\}\).   Not a countable set.

    • \(\mathbb{R}:=\) set of all real numbers \(=\mathbb{Q} \cup \mathbb{Q}^c\).  Note \(\mathbb{Q} \cap \mathbb{Q}^c=\emptyset\).  Not a countable set.

    • \(\mathbb{C}:=\) set of all complex numbers.

    • \(M_{mn}(\mathbb{R}):=\) set of all \(m \times n\) matrices over real numbers.

    • \(M_{mn}(\mathbb{C}):=\) set of all \(m \times n\) matrices over complex numbers.

    • The cardinality of a set \(A\) is written as \(|A|\).


    •  
    Example \(\PageIndex{2}\)

    \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}\).

    Example \(\PageIndex{3}\)

    Let \(A=\{1,2,3,5\}\).  Therefore \(|A|=4\). In this case, \(A\) is called a finite set.


    This page titled 0.1: Sets is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?