Skip to main content
Mathematics LibreTexts

6.2: Ring Homomorphisms

  • Page ID
    132673
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Ring Homomorphisms

    Definition: Ring homomorphisms

    Let \( R, S \) be rings. A function \( \phi: R \to S \) is called a ring homomorphism if 

    1. \( \phi(a+b)=\phi(a)+\phi (b), \forall a,b \in R, \) and 

    2. \( \phi(ab)=\phi(a) \phi (b), \forall a,b \in R. \)

     

    If \( \phi \) is bijective, then \( \phi \) is called isomorphism.

    Definition: Kernel of a homomorphism

    The kernel of \( \phi \) is denoted and defined as \( Ker(\phi) = \{ r \in R | \phi(r)=0 \}. \)

    Example \(\PageIndex{1}\)

    Define \( \phi: \mathbb{Z} \to \mathbb{Z}_n \) by \( \phi(a)=a(mod n), \forall a\in R. \)

    Then \( \phi \) is a ring homomorphism but not an isomorphism. In this case, \( Ker(\phi) = n \mathbb{Z}. \)

     

    Properties of ring homomorphisms:

    Theorem \(\PageIndex{1}\)

    Let \( R, S \) be rings. Let \( \phi: R \to S \) be a ring homomorphism. Then,

    Then 

    1. \( \phi(0)=0. \)

    2. if \( R \) is a commutative ring, then \( \phi(R) \) is also a commutative ring.

    3. if \( R \) is a field and \( \phi(R) \ne \{0\} \) then \( \phi(R) \) is also a field.

    4. if \( R \) and \(S \) have an identity. If \( \phi \) is onto then \( \phi(1_R)=1_S. \)

    Ideals:

    Definition: Ideal

    Let \( R \) be a  ring. Then  a subring \( I \) of \( R \) is called an ideal of \( R \) if \( ar \in I \), and \( ra \in I, \forall a \in I \) and \( r \in R. \)

    Theorem \(\PageIndex{2}\)

    Let \( R, S \) be rings. Let \( \phi: R \to S \) be a ring homomorphism. Then \( Ker (\phi)\) is an ideal of \(R\).


    This page titled 6.2: Ring Homomorphisms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?