Skip to main content
Mathematics LibreTexts

1.2: Exponents and Cancellation

  • Page ID
    14707
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Definition: Inverse

    Let \(S\) be a set with a binary operation \(\star\), and with identity \(e\). Let \(a \in S\), then \(b\in S \) is called an inverse of \(a\) if \(a \star b= b \star a=e.\)

    Example \(\PageIndex{1}\):

    1. For every \(a \in \mathbb{Z}\), \(-a\) is the inverse of \(a\) with the operation \(+\).
    2. For every \(a \in \mathbb{ R} \setminus \{0\}\), \(a^{-1}=\frac{1}{a}\) is the inverse of \(a\) with the multiplication.

    Cancellation law

    Let \(S\) be a set with a binary operation \(\star\). If for any \(a, b, c \in S\), \(a \star b= a \star c\) then \(b=c\)

    Example \(\PageIndex{2}\):

    \((1)(0)=(3)(0)=0\), but \(1 \ne 3\).

    Example \(\PageIndex{3}\):

    1. For any \(a, b, c \in \mathbb{Z}\), \(a + b= a + c\) then \(b=c\).
    2. For any \(a, b,c \in \mathbb{Z}\) and \(a\ne 0\), \(a b= a c\) then \(b=c\).

    Example \(\PageIndex{4}\):

    If \(ab=0\) then \(a=0\) or \(b=0\).

    Theorem \(\PageIndex{1}\)

    For any integers \(a\), and \( b\), the following are true.

    1. \(-(-a)=a.\)

    2. \(0(a)=0.\)

    3. \((-a)b=-ab.\)

    4. \((-a)(-b)=ab.\)

    Proof

    1. Let \(a \in \mathbb{Z}\). Since \(-a\) is the inverse of \(a\), \(a+(-a)=(-a)+a=0\). Therefore the additive inverse of \(-a\) is \(a\).

    Thus \(-(-a)=a.\)

    2. Let \(a \in \mathbb{Z}\). Then by distributive law, \(0a+0a=(0+0)a=0a=0a+0.\) Now by cancelations law, \(0a=0\).

    3. Let \(a, b \in \mathbb{Z}\). By distributive law, \( ((-a)+a)b=(-a)b+ab.\) Since \(-a\) is the additive inverse of \(a\), \((-a)+a=0\). By (2), \( 0=(-a)b+ab.\) Thus \((-a)b\) is the additive inverse of \(ab\). Hence \(-ab= (-a)b\).

    4. Let \(a, b \in \mathbb{Z}\). Since \( (-a)(-b)+(-a)b=(-a)(-b+b)=(-a)(0)=0.\) Hence \((-a)(-b)\) is the additive inverse of \((-a)b\). But \(ab\) is the additive inverse of \(-ab\). Thus by (3), we have \((-a)(-b)=ab.\).

    Definition: Exponentiation

    For every \(a, n \in \mathbb{Z_+}\), the binary operation exponentiation is denoted as \(a^n\), defined as \(n\) copies of \(a\).

    Example \(\PageIndex{5}\):

    \(2^3=8\)

    Example \(\PageIndex{6}\):

    1. Determine whether the exponentiation is associative?
    2. Determine whether the exponentiation is commutative?

    Solution

    1. Since \((3^2)^3= 9^3\) is not the same as \(3^{2^3}= 3^8\), the exponentiation is not associative.
    2. Since \(3^2= 9\) is not the same as \(2^3= 8\), the exponentiation is not commutative.

    Theorem \(\PageIndex{2}\)

    The exponentiation is distributive over multiplication. That is \((ab)^n=a^nb^n, \forall a, b, n \in \mathbb{Z}\).

    Proof

    Since multiplication is associative, the result follows.

    Example \(\PageIndex{7}\):

    Prove that \(a^m a^n= a^{m+n}, \forall a, m, n \in \mathbb{Z} \).

    Example \(\PageIndex{8}\):

    Prove that \((a^m)^n = a^{mn}, \forall a, m, n \in \mathbb{Z} \).


    This page titled 1.2: Exponents and Cancellation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?