# 3.E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## Exercise $$\PageIndex{1}$$:

Let $$a, b, c \in \mathbb{Z}$$, such that $$a \equiv b (mod\,n).$$

Show that $$ac=bc(mod\,n).$$

## Exercise $$\PageIndex{2}$$:

Find the remainder when $$(201)(203)(205)(207)$$ is divided by $$13.$$

## Exercise $$\PageIndex{3}$$:

Show that the sum of 2 odd integers is even.

## Exercise $$\PageIndex{4}$$:

Given that February 14, 2018, is a Wednesday, what day of the week will February $$14, 2090$$ be?

## Exercise $$\PageIndex{5}$$:

Find the remainder when 81789 is divided by 28.

## Exercise $$\PageIndex{6}$$:

Find the remainder,

1. when $$3^{1798}$$ is divided by $$28.$$
2. when $$2^{1798}$$ is divided by $$28.$$
3. when $$7^{5453}$$ is divided by $$8.$$
4. when $$3^{135}+15^2$$ is divided by $$7.$$

Exercise $$\PageIndex{7}$$:

Given a positive integer $$x,$$ rearrange its digits to form another integer $$y.$$ Explain why $$x-y$$ is divisible by $$9.$$

## Exercise $$\PageIndex{8}$$

Prove that for all integer $$n\geq 1,\,6$$ divides $$n^3-n.$$

## Exercise $$\PageIndex{9}$$

Compute the last two digits of $$9^{1600}$$.

## Exercise $$\PageIndex{10}$$

Show that $$a^2+b^2 \not\equiv 3(\mod 4)$$ for any integers $$a$$ and $$b$$.

## Exercise $$\PageIndex{11}$$

Let $$a$$ be an odd integer. Show that $$a^2 \equiv 1(\mod 8)$$.

3.E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.