$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 3.4E: Exercises

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## Exercises

### Exercise $$\PageIndex{1}$$

In Exercises 1-11 a direction field is drawn for the given equation. Sketch some integral curves.

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010301}

\caption*{{\color{red}\bf 1}\; A direction field for

$y'=\dst{\frac{x}{y}}$}

\end{figure}

\newpage

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010302}

\caption*{{\color{red}\bf 2}\; A direction field for

$\dst{y'=\dst{2xy^2\over1+x^2}}$\quad}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010303}

\caption*{{\color{red}\bf 3}\; A direction field for

$y'=x^2(1+y^2)$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010304}

\caption*{{\color{red}\bf 4}\; A direction field for

$y'=\dst{1\over1+x^2+y^2}$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010305}

\caption*{{\color{red}\bf 5}\; A direction field for

$y'=-(2xy^2+y^3)$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010306}

\caption*{{\color{red}\bf 6}\; A direction field for

$y'=(x^2+y^2)^{1/2}$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010307}

\caption*{{\color{red}\bf 7}\; A direction field for

$y'=\sin xy$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010308}

\caption*{{\color{red}\bf 8}\; A direction field for

$y'=e^{xy}$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010309}

\caption*{{\color{red}\bf 9}\; A direction field for

$y'=(x-y^2)(x^2-y)$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010310}

\caption*{{\color{red}\bf 10}\; A direction field for

$y'=x^3y^2+xy^3$}

\end{figure}

\begin{figure}[H]

\color{blue}

\centering

\includegraphics[bb=-78 148 689 643,width=5.67in,height=3.66in,keepaspectratio]{exer010311}

\caption*{{\color{red}\bf 11}\; A direction field for

$y'=\sin(x-2y)$}

\end{figure}

Add texts here. Do not delete this text first.

### Exercise $$\PageIndex{2}$$

In Exercises 12-22 construct a direction field and plot some integral curves in the indicated rectangular region.

12. \CGex

$$y'=y(y-1); \quad \{-1\le x\le 2,\ -2\le y\le2\}$$

13. \CGex

$$y'=2-3xy; \quad \{-1\le x\le 4,\ -4\le y\le4\}$$

14. \CGex

$$y'=xy(y-1); \quad \{-2\le x\le2,\ -4\le y\le 4\}$$

15. \CGex

$$y'=3x+y; \quad \{-2\le x\le2,\ 0\le y\le 4\}$$

16. \CGex

$$y'=y-x^3; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

17. \CGex

$$y'=1-x^2-y^2; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

18. \CGex

$$y'=x(y^2-1); \quad \{-3\le x\le3,\ -3\le y\le 2\}$$

19. \CGex

$$y'={x\over y(y^2-1)}; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

20. \CGex

$$y'={xy^2\over y-1}; \quad \{-2\le x\le2,\ -1\le y\le 4\}$$

21. \CGex

$$y'={x(y^2-1)\over y}; \quad \{-1\le x\le1,\ -2\le y\le 2\}$$

22. \CGex

$$y'=-{x^2+y^2\over1-x^2-y^2}; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

Add texts here. Do not delete this text first.

### Exercise $$\PageIndex{3}$$

23. \Lex

By suitably renaming the constants and dependent variables in the equations A: $$T' = -k(T-T_m)$$ and B: $$G'=-\lambda G+r$$ discussed in connection with Newton's

law of cooling and absorption of glucose in the body, we can write both as C: $$y'=- ay+b$$ where $$a$$ is a positive constant and $$b$$ is an arbitrary constant. Thus, (A) is of the form (C) with $$y=T$$, $$a=k$$, and $$b=kT_m$$, and (B) is of the form (C) with $$y=G$$, $$a=\lambda$$, and $$b=r$$. We'll encounter equations of the form (C) in many other applications.

Choose a positive $$a$$ and an arbitrary $$b$$. Construct a direction field and plot some integral curves for (C) in a rectangular region of the form $$\{0\le t\le T,\ c\le y\le d\}$$ of the $$ty$$-plane.

Vary $$T$$, $$c$$, and $$d$$ until you discover a common property of all the solutions of (C). Repeat this experiment with various choices of $$a$$ and $$b$$ until you can state this property precisely in terms of $$a$$ and $$b$$.

Add texts here. Do not delete this text first.

### Exercise $$\PageIndex{4}$$

24. \Lex

By suitably renaming the constants and dependent variables in the equations A: $$P'=aP(1-\alpha P)$$ and B: $$I'=rI(S-I)$$ discussed in connection with Verhulst's population model and the spread of an epidemic, we can write both in the form C: $$y'=ay-by^2$$ where $$a$$ and $$b$$ are positive constants. Thus, (A) is of the form (C) with $$y=P$$, $$a=a$$, and $$b=a\alpha$$, and (B) is of the form (C) with $$y=I$$, $$a=rS$$, and $$b=r$$. Later, we'll encounter equations of the form (C) in other applications..

(a) Choose positive numbers $$a$$ and $$b$$. Construct a direction field and plot some integral curves for (C) in a rectangular region of the form $$\{0\le t\le T,\ 0\le y\le d\}$$ of the $$ty$$-plane. Vary $$T$$ and $$d$$ until you discover a common property of all solutions of (C) with $$y(0)>0$$. Repeat this experiment with various choices of $$a$$ and $$b$$ until you can state this property precisely in terms of $$a$$ and $$b$$.

(b) Choose positive numbers $$a$$ and $$b$$. Construct a direction field and plot some integral curves for (C) in a rectangular region of the form $$\{0\le t\le T,\ c\le y\le 0\}$$ of the $$ty$$-plane. Vary $$a$$, $$b$$, $$T$$ and $$c$$ until you discover a common property of all solutions of (C) with $$y(0)<0$$.