3.1E: Exercises
- Page ID
- 18789
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercises
Exercise \(\PageIndex{1}\)
Find the order of the equation.
(a) \(\displaystyle{d^2y\over dx^2}+2{dy\over dx}\ {d^3y\over dx^3}+x=0\)
(b) \(y''-3y'+2y=x^7\)
(c) \(y'-y^7=0\)
(d) \(y''y-(y')^2=2\)
- Answer
-
(a) y''' therefore 3
(b) y'' therefore 2
(c) y' therefore 1
(d) y'' therefore 2
Exercise \(\PageIndex{2}\)
Verify that the function is a solution of the differential equation on some interval, for any choice of the arbitrary constants appearing in the function.
(a) \(y=ce^{2x}; \quad y'=2y\)
(b) \(y={x^2\over3}+{c\over x}; \quad xy'+y=x^2\)
(c) \(y={1\over2}+ce^{-x^2}; \quad y'+2xy=x\)
(d) \(y=(1+ce^{-x^2/2}); (1-ce^{-x^2/2})^{-1} \quad 2y'+x(y^2-1)=0\)
(e) \(y={\tan\left( {x^3\over3}+c\right)}; \quad y'=x^2(1+y^2)\)
(f) \(y=(c_1+c_2x)e^x+\sin x+x^2; \quad y''-2y'+y=-2 \cos x+x^2-4x+2\)
(g) \(y=c_1e^x+c_2x+{2\over x}; \quad (1-x)y''+xy'- y=4(1-x-x^2)x^{-3}\)
(h) \(y=x^{-1/2}(c_1\sin x+c_2 \cos x)+4x+8\);
\(x^2y''+xy'+{\left(x^2-{1\over4}\right)}y=4x^3+8x^2+3x-2\)
- Answer
-
(a) Given \(y=ce^{2x} \) then \(y' = ce^{2x} * 2 = 2y\).
(c) Given \(y={1\over2}+ce^{-x^2} \) then \(y' = ce^{-x^2}*-2x\).
Substituting into \(y'+2xy=x\) we obtain \(ce^{-x^2}*-2x +2x({1\over2}+ce^{-x^2}) = x\).
Rearranging and simplifying, we obtain \(-2xe^{-x^2}+2xe^{-x^2}+x=x\) and thus \(x=x\).
(e) Given \(y=\tan\left( \frac{x^3}{3}+c \right) \) then \(y' = x^2 \sec^2 \left( \frac{x^3}{3}+c \right)\).
Substituting into \( y'=x^2\left(1+y^2 \right) \) we obtain \( y' = x^2\left(1+ \tan^2\left( \frac{x^3}{3}+c \right) \right) \).
Recall from trig that \( 1+\tan^2\left(x\right)=\sec^2\left(x\right) \), thus \(y'=x^2 \sec^2 \left( \frac{x^3}{3}+c \right)\).
(g) Given \(y=c_1e^x+c_2x+{2\over x} \) then \(y'=c_1e^x+c_2-\frac{2}{x^2} \) and \(y''=c_1e^x+\frac{4}{x^3} \)
Substituting into \( (1-x)y''+xy'- y \) we obtain \( (1-x)(c_1e^x+\frac{4}{x^3}) +x(c_1e^x+c_2-\frac{2}{x^2}) -(c_1e^x+c_2x+\frac{2}{x}) \)
Simplifying we obtain \( (1-x)y''+xy'- y = \frac{4}{x^3}-\frac{4}{x^2}-\frac{4}{x} \).
Exercise \(\PageIndex{3}\)
Find all solutions of the equation.
(a) \(y'=-x\)
(b) \(y'=-x \sin x\)
(c) \(y'=x \ln x\)
(d) \(y''=x \cos x\)
(e) \(y''=2xe^x\)
(f) \(y''=2x+\sin x+e^x\)
(g) \(y'''=-\cos x\)
(h) \(y'''=-x^2+e^x\)
(i) \(y'''=7e^{4x}\)
- Answer
-
(a) \(y=\frac{-x^2}{2}+c \)
(b) \(y=x \cos(x) - \sin(x) + c \)
(c) \(y=\frac{x^2 ln(x)}{2}-\frac{x^2}{4}+c \)
(d) \(y'=x\sin\left(x\right)+\cos\left(x\right) + c_1\) thus \(y=2\sin\left(x\right)-x\cos\left(x\right)+c_1x +c_2\)
(e) \(y'=2(x-1)e^x+c_1 \) thus \(y = 2(x-2)e^x+c_1x+c_2 \)
(f) \(y'=x^2-\cos\left(x\right)+e^x+c_1 \) thus \(y=\frac{x^3}{3}-\sin\left(x\right)+e^x+c_1x+c_2 \)
(g) \(y''=-sin\left(x\right)+c_1\) thus \(y'=\cos\left(x\right)+c_1x+c_2\) resulting in \(y=\sin\left(x\right)+\frac{c_1x^2}{2}+c_2x+c_3\).
(h)\(y''=\frac{-x^3}{3} + e^x +c_1\) thus \(y'=\frac{-x^4}{12}+e^x+c_1x+c_2\) resulting in \(y=\frac{-x^5}{60}+e^x+c_1x^2+c_2x+c_3\).
(i) \(y''=\frac{7e^{4x}}{4}+c_1\) thus \(y'=\frac{7e^{4x}}{16}+c_1x+c_2\) resulting in \(y=\frac{7e^{4x}}{64}+c_1x^2+c_2x+c_3\).
Exercise \(\PageIndex{4}\)
Solve the initial value problem.
(a) \(y'=-xe^x, \quad y(0)=1\)
(b) \(y'=x \sin x^2, \quad y\left({\sqrt{\pi\over2}}\right)=1\)
(c) \(y'=\tan x, \quad y(\pi/4)=3\)
(d) \(y''=x^4, \quad y(2)=-1, \quad y'(2)=-1\)
(e) \(y''=xe^{2x}, \quad y(0)=7, \quad y'(0)=1\)
(f) \(y''=- x \sin x, \quad y(0)=1, \quad y'(0)=-3\)
(g) \(y'''=x^2e^x, \quad y(0)=1, \quad y'(0)=-2, \quad y''(0)=3\)
(h) \(y'''=2+\sin 2x, \quad y(0)=1, \quad y'(0)=-6, \quad y''(0)=3\)
(i) \(y'''=2x+1, \quad y(2)=1, \quad y'(2)=-4, \quad y''(2)=7\)
- Answer
-
(a) \(y=-xe^x+e^x+c\). Since \(y(0)=1, c=0\). Thus the solution is \(y=-xe^x+e^x\).
(c) \(y=-\ln\left(\left|\cos\left(x\right)\right|\right)+c\). Since \(y(\frac{\pi}{4})=3\), \(c=3+\ln(\frac{\sqrt{2}}{2}) \). Thus the solution is \(y=-\ln\left(\left|\cos\left(x\right)\right|\right)+3+\ln(\frac{\sqrt{2}}{2}) \).
(e) \(y'=\frac{xe^{2x}}{2}-\frac{e^{2x}}{4}+c\). Since \(y'(0)=1, c=\frac{5}{4}\).
\(y= \frac{xe^{2x}}{4}-\frac{e^{2x}}{4}+\frac{5x}{4}+c\). Since \(y(0)=7, c=\frac{29}{4}\).
Thus the solution is \(y=\frac{xe^{2x}}{4}-\frac{e^{2x}}{4}+\frac{5x}{4}+\frac{29}{4}\)
(f) \( y'=-x\cos\left(x\right)-\sin\left(x\right)+c_1\). Since \(y'(0)=-3, c_1=-3\).
\(y= x\sin\left(x\right)+2\cos\left(x\right)-3x+c_2\). Since \(y(0)=1, c_2=-1\).
Thus the solution is \(y=x\sin\left(x\right)+2\cos\left(x\right)-3x-1\).
(h) \( y''=2x-\frac{\cos\left( 2x\right)}{2}+c \). Since \(y''(0)=3\), \(c=\frac{7}{2}\).
\(y'=x^2-\frac{\sin\left( 2x\right)}{4}+\frac{7x}{2}+c \). Since \(y'(0)=-6\), \(c=-6\).
\(y=\frac{x^3}{3}+\frac{\cos\left( 2x\right)}{8}+\frac{7x^2}{4}-6x+c\). Since \(y(0)=1\), \(c=\frac{7}{8}\).
Thus the solution is \(y=\frac{x^3}{3}+\frac{\cos\left( 2x\right)}{8}+\frac{7x^2}{4}-6x+\frac{7}{8}\).
Exercise \(\PageIndex{5}\)
Verify that the function is a solution of the initial value problem.
(a) \(y=x\cos x; \quad y'=\cos x-y\tan x, \quad y(\pi/4)={\pi\over4\sqrt{2}}\)
(b) \({y={1+2\ln x\over x^2}+{1\over2}; \quad y'={x^2-2x^2y+2\over x^3}, \quad y(1)={3\over2}}\)
(c) \(y={\tan\left({x^2\over2}\right)}; \quad y'=x(1+y^2), \quad y(0)=0\)
(d) \({y={2\over x-2}; \quad y'={-y(y+1)\over x}}, \quad y(1)=-2\)
- Answer
-
(a) Substituting for \(y\) in \(y'\) we obtain: \(y'=\cos(x)-x\sin(x)\). Integrating we obtain \(y=x\cos(x) + C\). Given that \( y(\frac{\pi}{4})=\frac{4\pi}{\sqrt{2}}\), then \(C=0\) and thus \(y=x\cos(x)\).
(c) Substituting for \(y\) in \(y'\) we obtain: \(y'=x+x\tan^2(\frac{x^2}{2}) \). Integrating we obtain \( y=\tan(\frac{x^2}{2})+C\). Given that \( y(0)=0 \), then \( C=0 \) and thus \( y=\tan(\frac{x^2}{2})\).
Exercise \(\PageIndex{6}\)
Verify that the function is a solution of the initial value problem.
(a) \(y=x^2(1+\ln x); \quad y''={3xy'-4y\over x^2}, \quad y(e)=2e^2, \quad y'(e)=5e\)
(b) \(y={x^2\over3}+x-1; \quad y''={x^2-xy'+y+1\over x^2}, \quad y(1)={1\over3}, \quad y'(1)={5\over3}\)
(c) \(y=(1+x^2)^{-1/2}; \quad y''={(x^2-1)y-x(x^2+1)y'\over (x^2+1)^2}, \quad y(0)=1, y'(0)=0\)
(d) \(y={x^2\over 1-x}; \quad y''={2(x+y)(xy'-y)\over x^3}, \quad y(1/2)=1/2, \quad y'(1/2)=3\)
- Answer
-
(a) Given \(y=x^2(1+\ln x)\), then \(y'=3x+2x\ln|x|\). Substituting \(y\) and \(y'\) into \(y''\) we obtain \(y''=\frac{3x(3x+2x\ln|x|)-4(x^2(1+\ln|x|)}{x^2}\). Simplifying we obtain \(y''=5+2\ln|x|\) and then integrating, we obtain \( y'= 5x+2(x\ln|x|-x)+ c\). Since \(y'(e)=5e\), \(c=0\). Integrating \( y'= 3x+2x\ln|x|\), we obtain \(y = \frac{3x^2}{2} + x^2\ln|x|-\frac{x^2}{2}+c = x^2(1+\ln|x|)+c\). Since \(y(e) = 2e^2\), \(c= 0 \).
(c) Given \(y=(1+x^2)^{-1/2}\), then \(y'=\frac{-x}{(x^2+1)^{\frac{3}{2}}} \). Substituting for \(y\) and \(y'\) into \(y''\), and simplifying, we obtain \(y''=\frac{2x^2-1}{(1+x^2)^{5/2}} \). Integrating we obtain \(y'=\frac{-x}{(x^2+1)^{3/2}}+c\). Since \(y'(0)=0\), \(c=0\). Integrating \( \frac{-x}{(x^2+1)^{3/2}} \), we obtain \(y=\frac{1}{(x^2+1)^{1/2}} +c \). Since \(y(0)=1\), \(c=0\).
Exercise \(\PageIndex{7}\)
Suppose an object is launched from a point 320 feet above the earth with an initial velocity of 128 ft/sec upward, and the only force acting on it thereafter is gravity. Take \(g=32 ft/sec^2\)
(a) Find the highest altitude attained by the object.
(b) Determine how long it takes for the object to fall to the ground.
- Answer
-
(a) Since \(y'' =-32\), \(y'=-32t+c\). Since \(y'(0)=128\), \(c= 128\). Similarly since \(y'=-32t+128\) and \(y(0)=320\), \(y=-16t^2+128t+320\). The object is at its maximum height when \(y'=0\). This occurs at \(t=4\), which corresponds to a height of 576 feet.
(b) Set \(y=0\) and solvng for \(t\), we obtain \(t=10s\).
Exercise \(\PageIndex{8}\)
Let \(a\) be a nonzero real number.
(a) Verify that if \(c\) is an arbitrary constant then equation A: \(y=(x-c)^a \) is a solution of equation B: \(y'=ay^{(a-1)/a}\) on \((c,\infty)\).
(b) Suppose \(a<0\) or \(a>1\). Can you think of a solution of (B) that isn't of the form (A)?
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{9}\)
Verify that \(y= e^x-1, x \ge 0\) and \(1-e^{-x}, x < 0, \) is a solution of \(y'=|y|+1\) on \((-\infty,\infty)\).
- Hint
-
Use the definition of derivative at \(x=0\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{10}\)
(a) Verify that if \(c\) is any real number then equation A: \(y=c^2+cx+2c+1\) satisfies equation B: \(y'={-(x+2)+\sqrt{x^2+4x+4y}\over2}\) on some open interval. Identify the open interval.
(b) Verify that \(y_1={-x(x+4)\over4}\) also satisfies (B) on some open interval, and identify the open interval. (Note that \(y_1\) can't be obtained by selecting a value of \(c\) in (A).
- Answer
-
Add texts here. Do not delete this text first