Skip to main content
Mathematics LibreTexts

9.5E: EXERCISES

  • Page ID
    26276
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\): True or False

    For the following exercises, determine whether the statement is true or false.

    1. If the coordinate functions of \(\vecs{F}: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) have continuous second partial derivatives, then \(curl \, (div (F))\) equals zero.

    2. \(\nabla \cdot (x \, \hat{ \mathbf i} + y\, \hat{ \mathbf j}+ z\, \hat{ \mathbf k}) = 1\).

    Answer

    False

    3. All vector fields of the form \(\vecs{F}(x,y,z) = f(x) \, \hat{ \mathbf i}+ g(y) \, \hat{ \mathbf j} + h(z)\, \hat{ \mathbf k}\) are conservative.

    4. If \(curl \, \vecs{F}= 0\), then\( \vecs{F}\) is conservative.

    Answer

    True

    5. If \( \vecs{F}\) is a constant vector field then \(div \,(\vecs{F})= 0\).

    6. If \( \vecs{F}\) is a constant vector field then \(curl \,( \vecs{F})= 0\).

    Answer

    True

    Exercise \(\PageIndex{2}\): Curl

    For the following exercises, find the curl of \(\vecs{F}.\)

    1. \(\vecs{F}(x,y,z) = xy^2z^4 \, \hat{ \mathbf i} + (2x^2y + z)\, \hat{ \mathbf j} + y^3 z^2 \, \hat{ \mathbf k}\)
    2. \(\vecs{F}(x,y,z) = x^2 z \, \hat{ \mathbf i} + y^2 x\, \hat{ \mathbf j} + (y + 2z) \, \hat{ \mathbf k}\)

    Answer

    \(curl \,\( \vecs{F}\)= \, \hat{ \mathbf i} + x^2 \, \hat{ \mathbf j} + y^2 \, \hat{ \mathbf k}\)

    3. \(\vecs{F}(x,y,z) = 3xyz^2 \, \hat{ \mathbf i} + y^2 \sin z \, \hat{ \mathbf j} + xe^{2z} \, \hat{ \mathbf k}\)

    4. \(\vecs{F}(x,y,z) = x^2 yz \, \hat{ \mathbf i} + xy^2 z\, \hat{ \mathbf j} + xyz^2 \, \hat{ \mathbf k}\)

    Answer

    \(curl \,\( \vecs{F}\)= (xz^2 - xy^2) \, \hat{ \mathbf i}+ (x^2 y - yz^2)\, \hat{ \mathbf j} + (y^2z - x^2z) \, \hat{ \mathbf k}\)

    5. \(\vecs{F}(x,y,z) = (x \, \cos y) \, \hat{ \mathbf i}+ xy^2\, \hat{ \mathbf j}\)

    6. \(\vecs{F}(x,y,z) = (x - y) \, \hat{ \mathbf i} + (y - z)\, \hat{ \mathbf j} + (z - x) \, \hat{ \mathbf k}\)

    Answer

    \(curl \,\( \vecs{F}\)= \, \hat{ \mathbf i} + \, \hat{ \mathbf j} + \, \hat{ \mathbf k}\)

    7. \(\vecs{F}(x,y,z) = xyz \, \hat{ \mathbf i} + x^2y^2z^2\, \hat{ \mathbf j} + y^2z^3\, \hat{ \mathbf k}\)

    8. \(\vecs{F}(x,y,z) = xy \, \hat{ \mathbf i} + yz\, \hat{ \mathbf j} + xz \, \hat{ \mathbf k}\)

    Answer

    \(curl \,\( \vecs{F}\)= - y \, \hat{ \mathbf i} - z\, \hat{ \mathbf j} - x\, \hat{ \mathbf k}\)

    9. \(\vecs{F}(x,y,z) = x^2 \, \hat{ \mathbf i} + y^2 \, \hat{ \mathbf j} + z^2 \, \hat{ \mathbf k}\)

    10. \(\vecs{F}(x,y,z) = ax \, \hat{ \mathbf i} + by\, \hat{ \mathbf j} + c \, \hat{ \mathbf k}\) for constants a, b, c

    Answer

    \(curl \,\( \vecs{F}\)= 0\)

    Exercise \(\PageIndex{3}\): Divergence

    For the following exercises, find the divergence of \( \vecs{F}.\)

    1. \(\vecs{F}(x,y,z) = x^2 z \, \hat{ \mathbf i} + y^2 x \, \hat{ \mathbf j} + (y + 2z) \, \hat{ \mathbf k}\)

    2. \(\vecs{F}(x,y,z) = 3xyz^2 \, \hat{ \mathbf i} + y^2 \sin z \, \hat{ \mathbf j} + xe^2 \, \hat{ \mathbf k}\)

    Answer

    \(div ( \vecs{F})= 3yz^2 + 2y \, \sin z + 2xe^{2z}\)

    3. \(\vecs{F}(x,y) = (\sin x) \, \hat{ \mathbf i} + (\cos y) \, \hat{ \mathbf j}\)

    4. \(\vecs{F}(x,y,z) = x^2 \, \hat{ \mathbf i} + y^2 \, \hat{ \mathbf j} + z^2 \, \hat{ \mathbf k}\)

    Answer

    \(div \,\( \vecs{F}\)= 2(x + y + z)\)

    5. \(\vecs{F}(x,y,z) = (x - y) \, \hat{ \mathbf i} + (y - z) \, \hat{ \mathbf j} + (z - x) \, \hat{ \mathbf k}\)

    6. \(\vecs{F}(x,y) = \dfrac{x}{\sqrt{x^2+y^2}} \, \hat{ \mathbf i} + \dfrac{y}{\sqrt{x^2+y^2}}\, \hat{ \mathbf j}\)

    Answer

    \(div \,\( \vecs{F}\)= \dfrac{1}{\sqrt{x^2+y^2}}\)

    8. \(\vecs{F}(x,y) = x \, \hat{ \mathbf i}- y\, \hat{ \mathbf j}\)

    9. \(\vecs{F}(x,y,z) = ax \, \hat{ \mathbf i} + by\, \hat{ \mathbf j} + c\, \hat{ \mathbf k}\) for constants a, b, c

    Answer

    \(div \,\( \vecs{F}\)= a + b\)

    10. \(\vecs{F}(x,y,z) = xyz \, \hat{ \mathbf i}+ x^2y^2z^2\, \hat{ \mathbf j} + y^2z^3\, \hat{ \mathbf k}\)

    11. \(\vecs{F}(x,y,z) = xy \, \hat{ \mathbf i} + yz \, \hat{ \mathbf j} + xz \, \hat{ \mathbf k}\)

    Answer

    \(div \,\( \vecs{F}\)= x + y + z\)

    Exercise \(\PageIndex{4}\): Harmonic

    For the following exercises, determine whether each of the given scalar functions is harmonic.

    1. \(u(x,y,z) = e^{-x} (\cos y - \sin y)\)

    2. \(w(x,y,z) = (x^2 + y^2 + z^2)^{-1/2}\)

    Answer

    Harmonic

    Exercise \(\PageIndex{5}\): CURL

    1. If \(\vecs{F}(x,y,z) = 2 \, \hat{ \mathbf i} + 2x \, \hat{ \mathbf j} + 3y \, \hat{ \mathbf k}\) and \(\vecs{G}(x,y,z) = x \, \hat{ \mathbf i} - y \, \hat{ \mathbf j} + z \, \hat{ \mathbf k}\), find \(curl \, (F \times G)\).

    2. If \(\vecs{F}(x,y,z) = 2 \, \hat{ \mathbf i} + 2x \, \hat{ \mathbf j} + 3y \, \hat{ \mathbf k}\) and \(\vecs{G}(x,y,z) = x \, \hat{ \mathbf i} - y \, \hat{ \mathbf j} + z \, \hat{ \mathbf k}\), find \(div \, (F \times G)\).

    Answer

    \(div \, (F \times G) = 2z + 3x\)

    3. Find \(div \, F\), given that \(F = \nabla f\), where \(f(x,y,z) = xy^3z^2\).

    4. Find the divergence of \( \vecs{F}\) for vector field \(\vecs{F}(x,y,z) = (y^2 + z^2) (x + y) i + (z^2 + x^2)(y + z) \, \hat{ \mathbf j} + (x^2 + y^2)(z + x) \, \hat{ \mathbf k}\).

    Answer

    \(div \,\( \vecs{F}\)= 2r^2\)

    5. Find the divergence of \( \vecs{F}\) for vector field \(\vecs{F}(x,y,z) = f_1(y,z) \, \hat{ \mathbf i} + f_2 (x,z) \, \hat{ \mathbf j} + f_3 (x,y) \, \hat{ \mathbf k}\).

    6. For the following exercises, use \(r = |r|\) and \(r = (x,y,z)\).

    a) Find the \(curl \, r\)

    Answer

    \(curl \, r = 0\)

    b) Find the \(curl \, \dfrac{r}{r}\).

    c) Find the \(curl \, \dfrac{r}{r^3}\).

    Answer

    \(curl \, \dfrac{r}{r^3} = 0\)

    7. Let \(\vecs{F}(x,y) = \dfrac{-y\, \hat{ \mathbf i}+x\, \hat{ \mathbf j}}{x^2+y^2}\), where\( \vecs{F}\)is defined on \(\{(x,y) \in \mathbb{R} | (x,y) \neq (0,0) \}\). Find \(curl \, F\).

    Exercise \(\PageIndex{6}\): Curl

    For the following exercises, use a computer algebra system to find the curl of the given vector fields.

    1. [T] \(\vecs{F}x,y,z) = arctan \left(\dfrac{x}{y}\right) \, \hat{ \mathbf i} + \ln \sqrt{x^2 + y^2} \, \hat{ \mathbf j} + \, \hat{ \mathbf k}\)

    Answer

    \(curl \,\( \vecs{F}\)= \dfrac{2x}{x^2+y^2} \, \hat{ \mathbf k}\)

    2. [T] \(\vecs{F}(x,y,z) = \sin (x - y) \, \hat{ \mathbf i}+ \sin (y - z) \, \hat{ \mathbf j} + \sin (z - x) \, \hat{ \mathbf k}\)

    Exercise \(\PageIndex{7}\): Divergence

    For the following exercises, find the divergence of\( \vecs{F}\)at the given point.

    1. \(\vecs{F}(x,y,z) = \, \hat{ \mathbf i} + \, \hat{ \mathbf j} + \, \hat{ \mathbf k}\) at \((2, -1, 3)\)

    Answer

    \(div \,( \vecs{F})= 0\)

    2. \(\vecs{F}(x,y,z) = xyz \, \hat{ \mathbf i}+ y \, \hat{ \mathbf j} + z\, \hat{ \mathbf k}\) at \((1, 2, 3)\)

    3. \(\vecs{F}(x,y,z) = e^{-xy}\, \hat{ \mathbf i} + e^{xz}\, \hat{ \mathbf j} + e^{yz}\, \hat{ \mathbf k}\) at \((3, 2, 0)\)

    Answer

    \(div \, \vecs{F}= 2 - 2e^{-6}\)

    4. \(\vecs{F}(x,y,z) = xyz \, \hat{ \mathbf i} + y \, \hat{ \mathbf j} + z\, \hat{ \mathbf k}\) at \((1, 2, 1)\)

    5. \(\vecs{F}(x,y,z) = e^x \sin y \, \hat{ \mathbf i} - e^x \cos y \, \hat{ \mathbf j} \) at \((0, 0, 3)\)

    Answer

    \(div \,\( \vecs{F}\)= 0\)

    Exercise \(\PageIndex{8}\): CURL

    For the following exercises, find the curl of\( \vecs{F}\)at the given point.

    1. \(\vecs{F}(x,y,z) = \, \hat{ \mathbf i}+ \, \hat{ \mathbf j} + \, \hat{ \mathbf k}\) at \((2, -1, 3)\)

    2. \(\vecs{F}(x,y,z) = xyz \, \hat{ \mathbf i} + y \, \hat{ \mathbf j} + z\, \hat{ \mathbf k}\) at \((1, 2, 3)\)

    Answer

    \(curl \,\( \vecs{F}\)= \, \hat{ \mathbf j} - 3\, \hat{ \mathbf k}\)

    3. \(\vecs{F}(x,y,z) = e^{-xy}\, \hat{ \mathbf i} + e^{xz}\, \hat{ \mathbf j} + e^{yz}\, \hat{ \mathbf k}\) at \((3, 2, 0)\)

    4. \(\vecs{F}(x,y,z) = xyz\, \hat{ \mathbf i}+ y \, \hat{ \mathbf j} + z\, \hat{ \mathbf k}\) at \((1, 2, 1)\)

    Answer

    \(curl \,\( \vecs{F}\)= 2\, \hat{ \mathbf j} - \, \hat{ \mathbf k}\

    5. \(\vecs{F}(x,y,z) = e^x \sin y \, \hat{ \mathbf i} - e^x \cos y \, \hat{ \mathbf j} \) at \((0, 0, 3)\)

    Exercise \(\PageIndex{9}\)

    Let \(\vecs{F}(x,y,z) = (3x^2 y + az) \, \hat{ \mathbf i} + x^3 \, \hat{ \mathbf j} + (3x + 3z^2) \, \hat{ \mathbf k}\). For what value of a is\( \vecs{F}\)conservative?

    Answer

    \(a = 3\)

    Exercise \(\PageIndex{10}\)

    1. Given vector field \(\vecs{F}(x,y) = \dfrac{1}{x^2+y^2} (-y,x)\) on domain \(D = \dfrac{\mathbb{R}^2}{\{(0,0)\}} = \{(x,y) \in \mathbb{R}^2 |(x,y) \neq (0,0) \}\), is\( \vecs{F}\)conservative?

    2. Given vector field \(\vecs{F}(x,y) = \dfrac{1}{x^2+y^2} (x,y)\) on domain \(D = \dfrac{\mathbb{R}^2}{\{(0,0)\}}\), is\( \vecs{F}\)conservative?

    Answer

    \(\vecs{F}\) is conservative.

    3. Find the work done by force field \(\vecs{F}(x,y) = e^{-y}\, \hat{ \mathbf i} - xe^{-y}\, \hat{ \mathbf j}\) in moving an object from P(0, 1) to Q(2, 0). Is the force field conservative?

    Exercise \(\PageIndex{11}\)

    1. Compute divergence \(\vecs{F}= (\sinh x) \, \hat{ \mathbf i} + (\cosh y) \, \hat{ \mathbf j} - xyz \, \hat{ \mathbf k}\).

    Answer

    \(div \,( \vecs{F})= \cosh x + \sinh y - xy\)

    2. Compute \(curl \,( \vecs{F})= (\sinh x) \, \hat{ \mathbf i}+ (\cosh y) \, \hat{ \mathbf j} - xyz \, \hat{ \mathbf k}\).

    Answer

    TBA

    Exercise \(\PageIndex{12}\)

    For the following exercises, consider a rigid body that is rotating about the x-axis counterclockwise with constant angular velocity \(\omega = \langle a,b,c \rangle\). If P is a point in the body located at \(\vecs{r}= x\, \hat{ \mathbf i}+ y\, \hat{ \mathbf j} + z\, \hat{ \mathbf k}\), the velocity at P is given by vector field \(\vecs{F} = \omega \times \vecs{r} \).

    A three dimensional diagram of an object rotating about the x axis in a counterclockwise manner with constant angular velocity w = <a,b,c>. The object is roughly a sphere with pointed ends on the x axis, which cuts it in half. An arrow r is drawn from (0,0,0) to P(x,y,z) and down from P(x,y,z) to the x axis.

    a) Express\( \vecs{F}\) in terms of \(\, \hat{ \mathbf i}, \, \hat{ \mathbf j},\) and \(\, \hat{ \mathbf k}\) vectors.

    Answer

    \((bz - cy)\, \hat{ \mathbf i}+(cx - az)\, \hat{ \mathbf j} + (ay - bx)\, \hat{ \mathbf k}\)

    b) Find \(div \, \vecs{F}\).

    c) Find \(curl \, \vecs{F}\)

    Answer

    \(curl \,( \vecs{F})= 2\omega\)

    Exercise \(\PageIndex{13}\)

    In the following exercises, suppose that \(\nabla \cdot \vecs{F}= 0\) and \(\nabla \cdot \vecs{G}= 0\).

    a) Does \(\vecs{F} + \vecs{G}\) necessarily have zero divergence?

    b) Does \(\vecs{F} \times \vecs{G}\) necessarily have zero divergence?

    Answer

    \(\vecs{F} \times \vecs{G}\) does not have zero divergence.

    Exercise \(\PageIndex{14}\)

    In the following exercises, suppose a solid object in \(\mathbb{R}^3\) has a temperature distribution given by \(T(x,y,z)\). The heat flow vector field in the object is \(\vecs{F}= - k \nabla T\), where \(k > 0\) is a property of the material. The heat flow vector points in the direction opposite to that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is \(\nabla \cdot \vecs{F}= -k \nabla \cdot \nabla T = - k \nabla^2 T\).

    a) Compute the heat flow vector field.

    b) Compute the divergence.

    Answer

    \(\nabla \cdot \vecs{F}= -200 k [1 + 2(x^2 + y^2 + z^2)] e^{-x^2+y^2+z^2}\)

    Exercise \(\PageIndex{15}\)

    [T] Consider rotational velocity field \(\vecs{v}= \langle 0,10z, -10y \rangle\). If a paddlewheel is placed in plane \(x + y + z = 1\) with its axis normal to this plane, using a computer algebra system, calculate how fast the paddlewheel spins in revolutions per unit time.

    A three dimensional diagram of a rotational velocity field. The arrows are showing a rotation in a clockwise manner. A paddlewheel is shown in plan x + y + z = 1 with n extended out perpendicular to the plane.

    Glossary

    curl

    the curl of vector field \(F = \langle P,Q,R \rangle\), denoted \(\nabla \times F\), is the “determinant” of the matrix \(\begin{vmatrix} i \, \hat{ \mathbf j} \, \hat{ \mathbf k} \nonumber \\ \dfrac{\partial}{\partial x} \dfrac{\partial}{\partial y} \dfrac{\partial}{\partial z} \nonumber \\ P Q R \end{vmatrix}\) and is given by the expression \((R_y - Q_z)\, \hat{ \mathbf i} + (P_z - R_x ) \, \hat{ \mathbf j} + (Q_x - P_y) \, \hat{ \mathbf k}\); it measures the tendency of particles at a point to rotate about the axis that points in the direction of the curl at the point

    divergence

    the divergence of a vector field \(F = \langle P,Q,R\rangle \), denoted \(\nabla \times F\), is \(P_x + Q_y + R_z\); it measures the “outflowing-ness” of a vector field


    This page titled 9.5E: EXERCISES is shared under a not declared license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?