3.E: Number Patterns (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise 3.E.1: Hexagonal numbers (cornered)
Consider the hexagonal numbers are the sequence 1,6,15,28,45,66⋯. Predict the n th term. Explain your prediction.
- Answer
-
2n2−n.
Exercise 3.E.2: Finite sum
For each of the following, find the sum and explain your reasoning. Please do not use any formula.
- 1+3+5+7+9+⋯+197+199
- 1+12+14+⋯+1216+1217
- Answer
-
- 1+3+5+7+9+···+197+199
Notice that 1,3,5,7,⋯ terms of a sequence. This is an Arithmetic Sequence because the difference remains the same between the terms throughout the entire sequence. Hence,a=1&d=2.
Consider,
Sn=1+3+5+7+9+···+197+199
Sn=199+197+195+193+191+···+3+1
By adding we get,
(2Sn=200+200+200+200+200+···+200+200
2Sn=100(200)
Sn=((100)/2))(200)
Sn=(50)(200)
Sn=10000
Hence, the sum of the sequence is 10000.
2.
Exercise 3.E.3: Proof by induction
Consider the sequence 4,10,16,22,28,,…, assume that the pattern continues.
- Show that the nth term of this sequence can be expressed as 6n−2.
- Prove by using induction for all integers n≥1,4+10+16+⋯+(6n−2)=n(3n+1)
- Answer
-
1.
Term First difference 4 10 6 16 6 22 6 Notice that the first difference is constant. Hence the nth term is a linear function.
Let tn=an+b.
Then we need to find a,b.
First Equation: Let n=1
t1=4
4=a(1)+b
4=a+b
Second Equation: Let n=2
t2=10
10=a(2)+b
10=2a+b
To find a, we use 10=2a+b and −4=a+b. Therfore, 6=a.
Now to find b, we use a=6 and 4=a+b,
4=(6)+b
4−6=b
−2=b.
Hence,tn=6n−2.
2. Step 1: Base Step: Show that this statement is true for the smallest value
Check statement is true for n = 1.
L.H.S = 4
R.H.S = n(3n + 1)
= (1)(3(1) + 1)
= (1)(3 + 1)
= (1)(4)
= 4
Hence, the statement is true for n = 1.
Step 2: Induction Assumption:
We shall assume that the statement is true for n = k.
4 + 10 + 16 + . . . + (6k − 2) = k(3k + 1)
Step 3: Induction:
We shall show that the statement is true for n = k + 1.
4 + 10 + 16 + . . . + (6k − 2) + (6 (k + 1) − 2) = (k+1)(3(k + 1) + 1)
Consider, L.H.S = 4 + 10 + 16 + . . . + (6k − 2) + (6 (k + 1) − 2)
= k(3k + 1) + (6 ( k + 1) - 2)
= k (3k + 1) + (6k + 6 - 2)
= k (3k + 1) + (6k + 4)
= 3k 2 + k + 6k + 4
= 3k 2 + 7k + 4
= (k + 1)(3k + 4)
Hence, the statement is true for n = k + 1
Therefore, by induction the statement is true, ∀n ∈ N.
Exercise 3.E.4: Proof by induction
Consider the sequence 3,11,19,27,35,…, assume that the pattern continues.
- Show that the nth term of this sequence can be expressed as 8n−5.
- Prove by using induction for all integers n≥1,3+11+19⋯+(8n−5)=4n2−n.
Exercise 3.E.5: Tribonacci
Let's start with the numbers 0,0,1, and generate future numbers in our sequence by adding up the previous three numbers. Write out the first 15 terms in this sequence, starting with the first 1.
Exercise 3.E.6: Proof by induction
The sequence b0,b1,b2.... is defined as follows: b0=1,b1=3,b2=5, and for any integer n≥3,bn=3bn−2+2bn−3.
- Find b3,b4,b5 and b6.
- Prove that bn<2n+1 for all integers n≥1.
Exercise 3.E.7: Quadratic Sequence
Find the nth term of the sequence 5,10,17,26,37,⋯, assume that the pattern continues.
- Answer
-
(n+1)2+1=n2+2n+2
Exercise 3.E.8: Proof by induction
Prove by using induction: for all integers n≥1,1+4+7⋯+(3n−2)=n(3n−1)2.
- Answer
-
Step 1: Base Step: Show that this statement is true for the smallest value
Check statement is true for n = 1.
L.H.S = 1
R.H.S = n(3n−1) / (2)
= (1)(3(1) − 1) / (2)
= (1)(3 − 1) / (2)
= (1)(2) / (2)
= 1
Hence, the statement is true for n = 1.
Step 2: Induction Assumption:
We shall assume that the statement is true for n = k.
1+4+7...+(3k−2)= k(3k−1) / (2)
Step 3: Induction:
We shall show that the statement is true for n = k + 1.
1+4+7...+ (3k - 2) + (3(k + 1) − 2) = (k + 1)(3(k + 1) − 1) / (2)
Consider, L.H.S = k(3k − 1) / (2) + (3 (k + 1) − 2)
= k (3k − 1) / (2) + (3k + 3) − 2)
= k (3k − 1) / (2) + (3k + 1)
= (3k 2 + k ) / (2) + (3k + 1)
= (3k 2 + k + 3k + 1) / (2)
= (3k 2 + 4k + 1) / (2)
= ((k + 1)(3k + 1)) / (2)
Hence, the statement is true for n = k + 1
Therefore, by induction the statement is true, ∀n ∈ N.
Exercise 3.E.9: Recognizing sequence
Predict nth term of the sequence 23,34,45⋯ assume that the pattern continues. Explain your prediction.
- Answer
-
nn+1.
Exercise 3.E.10: Recognizing sequence
Consider the sequence t1=1,t2=3+5,t3=7+9+11,⋯. Predict the n th term. Justify your prediction.
Exercise 3.E.11: Proof by induction
Show that the perimeter of the design by joining n hexagons in a row is 8n+4 cm.
Exercise 3.E.13: Pentagonal Numbers (cornered)
Find the nth term of the sequence 1,5,12,22,⋯,assume that the pattern continues.
Exercise 3.E.14: Square Pyramidal numbers
Find the nth term of the sequence 1,5,14,30⋯., assume that the pattern continues.
Exercise 3.E.15: Difference
Compute the difference of each of the following sequences:
- an=n3
- an=n3_
- an=(n3)
- Answer
-
- n2+2n+1
- 3n2
- (n2).