Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.1: Trigonometric Functions

( \newcommand{\kernel}{\mathrm{null}\,}\)

  1. Express sec(θ), tan(θ), csc(θ), and cot(θ) in terms of sin(θ) and cos(θ).
     
  2. Convert 180 from degrees to radians.
     
  3. Convert π4 from radians to degrees.
     
  4. Convert 270 from degrees to radians.
     
  5. Convert π6 from radians to degrees.
     
  6. Convert 60 from degrees to radians.
     
  7. Convert π2 from radians to degrees.
     
  8. Given the triangle below, find two sets of values for the lengths of the sides a, b, and c.
    A right triangle with an angle equal to pi/6. The side adjacent to this angle is labeled a, the side opposite this angle is labeled b, and the hypothenuse is labeled c.
     
  9. Given the triangle below, find two sets of values for the lengths of the sides a, b, and c.
    A right triangle with an angle equal to pi/4. The side adjacent to this angle is labeled a, the side opposite this angle is labeled b, and the hypothenuse is labeled c.
     
  10. Given the triangle below, find two sets of values for the lengths of the sides a, b, and c.
    A right triangle with an angle equal to pi/3. The side adjacent to this angle is labeled a, the side opposite this angle is labeled b, and the hypothenuse is labeled c.
     
  11. Given the triangle below, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
    A right triangle with acute angle theta, whete the side adjacent to theta is 2, the side opposite theta is sqrt(5), and the hypotenuse is 3.
     
  12. Find the reference angle to π3.
     
  13. Find the reference angle to 7π6.
     
  14. Find the reference angle to 3π4.
     
  15. Find the reference angle to 11π6.
     
  16. Find the reference angle to 5π4.
     
  17. Find the reference angle to 2π3.
     
  18. Find the reference angle to 9π4.
     
  19. Find the reference angle to 2π3.
     
  20. For what values of θ[0,2π] is sinθ=0? For what values of θ[0,2π] is sinθ>0? For what values of θ[0,2π] is sinθ<0?
     
  21. For what values of θ[0,2π] is cosθ=0? For what values of θ[0,2π] is cosθ>0? For what values of θ[0,2π] is cosθ<0?
     
  22. For what values of θ[0,2π] is tanθ=0? For what values of θ[0,2π] is tanθ>0? For what values of θ[0,2π] is tanθ<0?
     
  23. Given θ=0, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  24. Given θ=π3, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  25. Given θ=3π4, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  26. Given θ=π2, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  27. Given θ=2π, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  28. Given θ=7π6, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  29. Given θ=4π3, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  30. Given θ=3π2, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  31. Given θ=5π3, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  32. Given θ=π, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  33. Given θ=8π3, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  34. Given θ=5π2, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  35. Given θ=π4, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  36. Given θ=π, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  37. Given θ=π2, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  38. Given θ=8π3, find sin(θ), cos(θ), sec(θ), tan(θ), csc(θ), and cot(θ).
     
  39. Find all values of α[0,2π) where sin(α)=12.
     
  40. Find all values of α[0,2π) where cos(α)=0.
     
  41. Find all values of α[0,2π) where tan(α)=3.
     
  42. Find all values of α[0,2π) where sec(α)=2.
     
  43. Find all values of α[0,2π) where cot(α)=1.
     
  44. Find all values of α[0,2π) where csc(α) is undefined.

1.1: Trigonometric Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?