Skip to main content
Mathematics LibreTexts

1.1: Trigonometric Functions

  • Page ID
    143258
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1. Express \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\) in terms of \(\sin(\theta)\) and \(\cos(\theta)\).
       
    2. Convert \(180^\circ\) from degrees to radians.
       
    3. Convert \(\dfrac{\pi}{4}\) from radians to degrees.
       
    4. Convert \(270^\circ\) from degrees to radians.
       
    5. Convert \(\dfrac{\pi}{6}\) from radians to degrees.
       
    6. Convert \(60^\circ\) from degrees to radians.
       
    7. Convert \(\dfrac{\pi}{2}\) from radians to degrees.
       
    8. Given the triangle below, find two sets of values for the lengths of the sides \(a\), \(b\), and \(c\).
      A right triangle with an angle equal to pi/6. The side adjacent to this angle is labeled a, the side opposite this angle is labeled b, and the hypothenuse is labeled c.
       
    9. Given the triangle below, find two sets of values for the lengths of the sides \(a\), \(b\), and \(c\).
      A right triangle with an angle equal to pi/4. The side adjacent to this angle is labeled a, the side opposite this angle is labeled b, and the hypothenuse is labeled c.
       
    10. Given the triangle below, find two sets of values for the lengths of the sides \(a\), \(b\), and \(c\).
      A right triangle with an angle equal to pi/3. The side adjacent to this angle is labeled a, the side opposite this angle is labeled b, and the hypothenuse is labeled c.
       
    11. Given the triangle below, find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
      A right triangle with acute angle theta, whete the side adjacent to theta is 2, the side opposite theta is sqrt(5), and the hypotenuse is 3.
       
    12. Find the reference angle to \(\dfrac{\pi}{3}\).
       
    13. Find the reference angle to \(\dfrac{7\pi}{6}\).
       
    14. Find the reference angle to \(\dfrac{3\pi}{4}\).
       
    15. Find the reference angle to \(\dfrac{11\pi}{6}\).
       
    16. Find the reference angle to \(\dfrac{5\pi}{4}\).
       
    17. Find the reference angle to \(\dfrac{2\pi}{3}\).
       
    18. Find the reference angle to \(\dfrac{9\pi}{4}\).
       
    19. Find the reference angle to \(-\dfrac{2\pi}{3}\).
       
    20. For what values of \(\theta \in [0, 2\pi]\) is \(\sin \theta = 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\sin \theta > 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\sin \theta < 0\)?
       
    21. For what values of \(\theta \in [0, 2\pi]\) is \(\cos \theta = 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\cos \theta > 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\cos \theta < 0\)?
       
    22. For what values of \(\theta \in [0, 2\pi]\) is \(\tan \theta = 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\tan \theta > 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\tan \theta < 0\)?
       
    23. Given \(\theta = 0\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    24. Given \(\theta = \dfrac{\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    25. Given \(\theta = \dfrac{3\pi}{4}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    26. Given \(\theta = \dfrac{\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    27. Given \(\theta = 2\pi\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    28. Given \(\theta = \dfrac{7\pi}{6}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    29. Given \(\theta = \dfrac{4\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    30. Given \(\theta = \dfrac{3\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    31. Given \(\theta = \dfrac{5\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    32. Given \(\theta = \pi\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    33. Given \(\theta = \dfrac{8\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    34. Given \(\theta = \dfrac{5\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    35. Given \(\theta = -\dfrac{\pi}{4}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    36. Given \(\theta = -\pi\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    37. Given \(\theta = -\dfrac{\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    38. Given \(\theta = -\dfrac{8\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
       
    39. Find all values of \(\alpha \in [0, 2\pi)\) where \(\sin(\alpha) = \dfrac{1}{\sqrt{2}}\).
       
    40. Find all values of \(\alpha \in [0, 2\pi)\) where \(\cos(\alpha) = 0\).
       
    41. Find all values of \(\alpha \in [0, 2\pi)\) where \(\tan(\alpha) = -\sqrt{3}\).
       
    42. Find all values of \(\alpha \in [0, 2\pi)\) where \(\sec(\alpha) = -2\).
       
    43. Find all values of \(\alpha \in [0, 2\pi)\) where \(\cot(\alpha) = -1\).
       
    44. Find all values of \(\alpha \in [0, 2\pi)\) where \(\csc(\alpha)\) is undefined.

    1.1: Trigonometric Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?