1.1: Trigonometric Functions
- Page ID
- 143258
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Express \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\) in terms of \(\sin(\theta)\) and \(\cos(\theta)\).
- Convert \(180^\circ\) from degrees to radians.
- Convert \(\dfrac{\pi}{4}\) from radians to degrees.
- Convert \(270^\circ\) from degrees to radians.
- Convert \(\dfrac{\pi}{6}\) from radians to degrees.
- Convert \(60^\circ\) from degrees to radians.
- Convert \(\dfrac{\pi}{2}\) from radians to degrees.
- Given the triangle below, find two sets of values for the lengths of the sides \(a\), \(b\), and \(c\).
- Given the triangle below, find two sets of values for the lengths of the sides \(a\), \(b\), and \(c\).
- Given the triangle below, find two sets of values for the lengths of the sides \(a\), \(b\), and \(c\).
- Given the triangle below, find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Find the reference angle to \(\dfrac{\pi}{3}\).
- Find the reference angle to \(\dfrac{7\pi}{6}\).
- Find the reference angle to \(\dfrac{3\pi}{4}\).
- Find the reference angle to \(\dfrac{11\pi}{6}\).
- Find the reference angle to \(\dfrac{5\pi}{4}\).
- Find the reference angle to \(\dfrac{2\pi}{3}\).
- Find the reference angle to \(\dfrac{9\pi}{4}\).
- Find the reference angle to \(-\dfrac{2\pi}{3}\).
- For what values of \(\theta \in [0, 2\pi]\) is \(\sin \theta = 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\sin \theta > 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\sin \theta < 0\)?
- For what values of \(\theta \in [0, 2\pi]\) is \(\cos \theta = 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\cos \theta > 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\cos \theta < 0\)?
- For what values of \(\theta \in [0, 2\pi]\) is \(\tan \theta = 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\tan \theta > 0\)? For what values of \(\theta \in [0, 2\pi]\) is \(\tan \theta < 0\)?
- Given \(\theta = 0\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{3\pi}{4}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = 2\pi\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{7\pi}{6}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{4\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{3\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{5\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \pi\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{8\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = \dfrac{5\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = -\dfrac{\pi}{4}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = -\pi\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = -\dfrac{\pi}{2}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Given \(\theta = -\dfrac{8\pi}{3}\), find \(\sin(\theta)\), \(\cos(\theta)\), \(\sec(\theta)\), \(\tan(\theta)\), \(\csc(\theta)\), and \(\cot(\theta)\).
- Find all values of \(\alpha \in [0, 2\pi)\) where \(\sin(\alpha) = \dfrac{1}{\sqrt{2}}\).
- Find all values of \(\alpha \in [0, 2\pi)\) where \(\cos(\alpha) = 0\).
- Find all values of \(\alpha \in [0, 2\pi)\) where \(\tan(\alpha) = -\sqrt{3}\).
- Find all values of \(\alpha \in [0, 2\pi)\) where \(\sec(\alpha) = -2\).
- Find all values of \(\alpha \in [0, 2\pi)\) where \(\cot(\alpha) = -1\).
- Find all values of \(\alpha \in [0, 2\pi)\) where \(\csc(\alpha)\) is undefined.