Skip to main content
Mathematics LibreTexts

4.1: Maxima and Minima

  • Page ID
    144280
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. A continuous function \(f(x)\) is defined over an interval \([-2, 3]\). Can we guarantee that \(f(x)\) has an absolute maximum over \([-2, 3]\)? If yes, briefly explain. If not, sketch a counterexample.
       
    2. A function \(g(x)\) is defined over an interval \([-2, 3]\). Can we guarantee that \(g(x)\) has an absolute maximum over \([-2, 3]\)? If yes, briefly explain. If not, sketch a counterexample.
       
    3. A discontinuous function \(h(x)\) is defined over an interval \([-2, 3]\). Can we guarantee that \(h(x)\) does not have an absolute maximum over \([-2, 3]\)? If yes, briefly explain. If not, sketch a counterexample.
       
    4. A continuous function \(f(x)\) is defined over an interval \([-2, \infty)\). Can we guarantee that \(f(x)\) has an absolute maximum over \([-2, \infty)\)? If yes, briefly explain. If not, sketch a counterexample.
       
    5. A discontinuous function \(h(x)\) is defined over an interval \([-2, \infty)\). Can we guarantee that \(h(x)\) does not have an absolute maximum over \([-2, \infty)\)? If yes, briefly explain. If not, sketch a counterexample.
       
    6. Find the absolute maximum and minimum of \(f(x) = x^2 + 3\) over the interval \([-1, 4]\).
       
    7. Find the absolute maximum and minimum of \(g(x) = 3 + 2x - x^2\) over the interval \([-1, 1]\).
       
    8. Find the absolute maximum and minimum of \(h(x) = x^2 + \dfrac{2}{x}\) over the interval \([1, 4]\).
       
    9. Find the absolute maximum and minimum of \(y = \sqrt{x} - \sqrt{x}^3\) over the interval \([0, 4]\).
       
    10. Find the absolute maximum and minimum of \(f(x) = \sin x \cos x\) over the interval \([0, 2\pi]\).
       
    11. Find the absolute maximum and minimum of \(g(x) = \sin x + \cos x\) over the interval \([0, 2\pi]\).
       
    12. Find all local maxima and minima of \(f(x) = x^2 - x\). Confirm your results with a graphing calculator.
       
    13. Find all local maxima and minima of \(g(x) = 2 + 3x - x^3\). Confirm your results with a graphing calculator.
       
    14. Find all local maxima and minima of \(h(x) = x^4 - 2x^2 + 3\). Confirm your results with a graphing calculator.
       
    15. Find all local maxima and minima of \(y = x^4 + 2x^3\). Confirm your results with a graphing calculator.
       
    16. Find all local maxima and minima of \(f(x) = \dfrac{x^2-1}{x}\). Confirm your results with a graphing calculator.
       
    17. Find all local maxima and minima of \(g(x) = \dfrac{1}{x^2 + 1}\). Confirm your results with a graphing calculator.
       
    18. Find all local maxima and minima of \(h(x) = \dfrac{x^2 + x + 6}{x + 1}\). Confirm your results with a graphing calculator.
       
    19. Find all local maxima and minima of \(y = \dfrac{1}{x^2 + 1}\). Confirm your results with a graphing calculator.
       
    20. Find all local maxima and minima of \(f(x) = \sqrt{4 - x^2}\). Confirm your results with a graphing calculator.
       
    21. Find all local maxima and minima of \(g(x) = x^{1/3}\). Confirm your results with a graphing calculator.
       
    22. Find all local maxima and minima of \(h(x) = x^{2/3}\). Confirm your results with a graphing calculator.
       
    23. Find all local maxima and minima of \(y(x) = |x|\). Confirm your results with a graphing calculator.
       
    24. Find all local maxima and minima of \(g(x) = xe^x\). Confirm your results with a graphing calculator.
       
    25. Find all local maxima and minima of \(h(x) = x^2e^x\). Confirm your results with a graphing calculator.
       
    26. Find all local maxima and minima of \(f(x) = x\ln x\). Confirm your results with a graphing calculator.
       
    27. Find all local maxima and minima of \(h(x) = |x-1| + |x+1|\). Confirm your results with a graphing calculator.
       
    28. Find all local maxima and minima of \(f(x) = \left\{\begin{align*}
      & x^2 + 1, & x \le 1 \\
      & x^2 - 4x + 5, & x > 1.
      \end{align*}\right.\) Confirm your results with a graphing calculator.

    4.1: Maxima and Minima is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?