Skip to main content
Mathematics LibreTexts

8.1: Vector-Valued Functions and Space Curves

  • Page ID
    144336
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Given the vector-valued function \(\mathbf{r}(t) = (2t^2 + 3, \sqrt{3t - 2})\), find \(\mathbf{r}(2)\).
       
    2. Given the vector-valued function \(\mathbf{r}(t) = \sec t\mathbf{i} + \tan t\mathbf{j}\), find \(\mathbf{r}\left(\frac{\pi}{4}\right)\).
       
    3. Sketch the curve of the vector-valued function \(\mathbf{r}(t) = t\mathbf{i} + (1 - t^2)\mathbf{j}\).
       
    4. Sketch the curve of the vector-valued function \(\mathbf{r}(t) = (t, t^2, t)\).
       
    5. Sketch the curve of the vector-valued function \(\mathbf{r}(t) = (\cos t, \sin t)\). Be sure to indicate the orientation of the curve.
       
    6. Sketch the curve of the vector-valued function \(\mathbf{r}(t) = \sin t\mathbf{i} + \cos t\mathbf{j} + t\mathbf{k}\). Be sure to indicate the orientation of the curve.
       
    7. Find the domain of the vector-valued function \(\mathbf{r}(t) = \left(\dfrac{1}{t-3}, \sqrt{t^2 - 1}\right)\).
       
    8. Find the domain of the vector-valued function \(\mathbf{r}(t) = 2e^t\mathbf{i} + \ln t\mathbf{j} + \dfrac{1}{t^2 + 1}\mathbf{k}\).
       
    9. Evaluate \(\displaystyle \lim_{t \to 0} (2t + 1, \cos t)\), if possible.
       
    10. Evaluate \(\displaystyle \lim_{t \to 2} \left(\frac{t - 2}{t^2 - 4}, e^t\right)\), if possible.
       
    11. Evaluate \(\displaystyle \lim_{t \to \infty} \left(e^{-t}\mathbf{i} + \frac{3t^2 + 2t - 4}{2 - 5t^2}\mathbf{j} + \arctan(t)\mathbf{k}\right)\), if possible.
       
    12. Evaluate \(\displaystyle \lim_{t \to 0^+} \left( \frac{\sin t}{t}, \ln t, 4\right)\), if possible.
       
    13. Express the vector-valued function \(\mathbf{r}(t) = 2t\mathbf{i} - (3 + t)\mathbf{j}\) in Cartesian coordinates by eliminating the parameter \(t\), then sketch the graph of the vector-valued function. Be sure to indicate the orientation of the curve.
       
    14. Express the vector-valued function \(\mathbf{r}(t) = (t^3, t^2)\) in Cartesian coordinates by eliminating the parameter \(t\), then sketch the graph of the vector-valued function. Be sure to indicate the orientation of the curve.
       
    15. Express the vector-valued function \(\mathbf{r}(t) = \dfrac{1}{t}(\mathbf{i} + \mathbf{j})\) in Cartesian coordinates by eliminating the parameter \(t\), then sketch the graph of the vector-valued function. Be sure to indicate the orientation of the curve.
       
    16. Express the vector-valued function \(\mathbf{r}(t) = (2\sin t, -3\cos t)\) in Cartesian coordinates by eliminating the parameter \(t\), then sketch the graph of the vector-valued function. Be sure to indicate the orientation of the curve.
       
    17. Express the vector-valued function \(\mathbf{r}(t) = 3\sec^2t\mathbf{i} + \tan t\mathbf{j}\) in Cartesian coordinates by eliminating the parameter \(t\), then sketch the graph of the vector-valued function. Be sure to indicate the orientation of the curve.
       
    18. Find a vector-valued function that traces the line from point \(P(1, 0, 1)\) to point \(Q(0, 1, 0)\).
       
    19. Find a vector-valued function that traces the parabola \(y = x^2\) from left-to-right.
       
    20. Find a vector-valued function that traces the ellipse \(4x^2 + 9y^2 = 36\) in the counterclockwise direction.
       
    21. Find a vector-valued function that traces the hyperbola \(\dfrac{x^2}{16} - y^2 = 1\), where the right branch is oriented top-to-bottom.

    8.1: Vector-Valued Functions and Space Curves is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?