Skip to main content
Mathematics LibreTexts

9.2: Limits and Continuity

  • Page ID
    144342
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} (2x^2 - 3y + 7)\), if possible. If the limit does not exist, explain why.
       
    2. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (2, -1)} \dfrac{x^2}{x^2 + y^2}\), if possible. If the limit does not exist, explain why.
       
    3. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} \dfrac{x^2}{x^2 + y^2}\), if possible. If the limit does not exist, explain why.
       
    4. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} \dfrac{xy}{x^2 + y^2}\), if possible. If the limit does not exist, explain why.
       
    5. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} \dfrac{x^4 - y^4}{x^2 + y^2}\), if possible. If the limit does not exist, explain why.
       
    6. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (2, 1)} \dfrac{x - y - 1}{\sqrt{x - y} - 1}\), if possible. If the limit does not exist, explain why.
       
    7. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} \dfrac{xy}{x^2 + y^2}\), if possible. If the limit does not exist, explain why.
       
    8. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (2, 0)} \dfrac{x^2 \sin y}{y}\), if possible. If the limit does not exist, explain why.
       
    9. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} \dfrac{x^2 + \sin^2 y}{2x^2 + y^2}\), if possible. If the limit does not exist, explain why.
       
    10. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} \dfrac{x^2y}{x^4 + y^2}\), if possible. If the limit does not exist, explain why. [Hint: In addition to other paths, consider the limit along the path \(y = x^2\).]
       
    11. Evaluate \(\displaystyle \lim_{(x, y, z) \rightarrow (0, 0, 0)} \dfrac{x^2 - y^2 - z^2}{x^2 + y^2 - z^2}\), if possible. If the limit does not exist, explain why.
       
    12. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} \dfrac{x^3 + y^3}{x^2 + y^2}\) by converting to polar coordinates.
       
    13. Evaluate \(\displaystyle \lim_{(x, y) \rightarrow (0, 0)} x \ln (x^2 + y^2)\) by converting to polar coordinates.
       
    14. Evaluate \(\displaystyle \lim_{(x, y, z) \rightarrow (0, 0, 0)} \dfrac{xyz}{x^2 + y^2 + z^2}\) by converting to spherical coordinates.
       
    15. Determine the region in the \(xy\)-plane over which \(f(x, y) = \sin(xy)\) is continuous.
       
    16. Determine the region in the \(xy\)-plane over which \(g(x, y) = \ln(x^2 + y^2)\) is continuous.
       
    17. Determine the region in the \(xy\)-plane over which \(h(x, y) = \dfrac{1}{xy}\) is continuous.

    9.2: Limits and Continuity is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?