Skip to main content
Mathematics LibreTexts

9.8: Lagrange Multipliers

  • Page ID
    144348
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y) = 4xy\) subject to the constraint \(\dfrac{x^2}{9} + \dfrac{y^2}{16} = 1\).
       
    2. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y) = x^2 + y^2 + 2x - 2y + 1\) subject to the constraint \(x^2 + y^2 = 2\).
       
    3. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y) = x^2 + y^2\) subject to the constraint \(xy = 1\).
       
    4. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y) = x^2 - y^2\) subject to the constraint \(x - 2y + 6 = 0\).
       
    5. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y) = 4x^3 + y^2\) subject to the constraint \(2x^2 + y^2 = 1\).
       
    6. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y, z) = x + y + z\) subject to the constraint \(\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1\).
       
    7. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y, z) = xyz\) subject to the constraint \(x^2 + 2y^2 + 3z^2 = 6\).
       
    8. Use the method of Lagrange multipliers to find the maximum and minimum values of \(f(x, y, z) = x^2 + y^2 + z^2\) subject to the constraint \(xyz = 4\).
       
    9. Find the points on the surface \(z^2 - xy = 1\) that are closest to the origin.
       
    10. Miguel needs to construct a six-sided rectangular box with a volume of \(2\) cubic meters. What should the dimensions of the box be to minimize the box's surface area?
       
    11. A length of sheet metal is to be made into a water trough by bending up two sides of length \(x\) at an angle \(\phi\), leaving a floor of length \(y\). (See the figure below.) If the metal sheet has a width of \(2\) meters, find the values of \(x\), \(y\), and \(\phi\) that maximize the area of the trapezoid-shaped cross section. [Hint: Since the width of the sheet is \(2\) meters, \(2x + y = 2\).]

      A diagram showing the cross section of a trapezoid-shaped water trough. The two sides of the trough are each of length x and are each bent up an acute angle of phi from the horizontal. The remaining horizontal floor of the trough has length y.

    9.8: Lagrange Multipliers is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?