Skip to main content
Mathematics LibreTexts

10.2: The One Mean T Procedure

  • Page ID
    105855
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In One Mean Z Procedure, one major assumption was made that is rarely satisfied - it is very unlikely for anyone to know the population standard deviation without knowing the population mean. So, what do we do in a real-life scenario?

    Naturally when a population parameter is not known we can use a sample statistic as an unbiased estimate. It is very natural to use the sample standard deviation, \(s\), instead of the unknown population standard deviation, \(\sigma\).

    As a result, the sample mean of a sample of size \(n\) is not normally distributed anymore but rather has another well-studied distribution called Student t-distribution with \(n-1\) degrees of freedom.

    From the practical point of view, the effects of this change are very simple – we can still use the same procedure but need to replace \(\sigma\) and \(z_{\alpha/2}\) with \(s\) and \(t_{\alpha/2}\) respectively.

    For the procedure to work the following assumptions must be made:

    • The sample is simple random.
    • The CLT must be applicable, that is at least one of the following must be true:
      • The sample size, \(n\), is greater than 30.
      • The population is normally distributed.
    • The population standard deviation, \(\sigma\), is unknown.

    Consider the following example.

    Example \(\PageIndex{1}\)

    An image of a person contracting a virus and developing symptoms.

    An incubation period is a time between when you contract a virus and when your symptoms start. Assume that the population of incubation periods for a novel coronavirus is normally distributed. By surveying randomly selected local hospitals, a researcher was able to obtain the following sample of incubation periods of 10 patients:

    6, 2, 4, 3, 3, 7, 5, 8, 5, 7

    Use the sample to construct and interpret a 90% confidence interval for the average incubation period of the novel coronavirus.

    Solution

    First, let’s check if all necessary assumptions are satisfied:

    • The sample is simple random.
    • The population is normally distributed thus the CLT for sample means is applicable.
    • The population standard deviation, \(\sigma\), is unknown.

    Also, note that the average and the standard deviation of the sample are respectively

    \(\bar{x}_i=\dfrac{6+2+4+3+3+7+5+8+5+7}{10}=5\) and \(s=2\)

    We will use the following template to construct and interpret the confidence interval:

    Table \(\PageIndex{1.1}\): Template of the procedure to construct a confidence interval for the population mean from a sample when the population standard deviation is unknown.

    Unknown Parameter

    \(\mu\), population mean

    Point Estimate

    \(\bar{x}_i\), the mean of a random sample of size \(n\)

    Confidence Level

    (of the point estimate)

    0%

    Confidence Level

    (for a new interval estimate)

    \((1-\alpha)100\%\)

    \(\alpha\)

    \(\alpha/2\)

    Critical Value(s) \(t_{\alpha/2}\) with \(df=n-1\)

    Margin of Error

    \(ME=t_{\alpha/2}\dfrac{s}{\sqrt{n}}\)

    Lower Bound

    \(LB=\bar{x}_i-ME\)

    Upper Bound

    \(UB=\bar{x}_i+ME\)

    Interpretation We are \((1-\alpha)100\%\) confident that the unknown population mean \(\mu\) is between LB and UB.

    In our example, we perform the procedure (fill out the table) in the following way:

    Table \(\PageIndex{1.2}\): The summary of the procedure to construct a 90% confidence interval for the mean incubation period of a novel coronavirus from a sample of size 10 when the population standard deviation is unknown.
      Example Template

    Unknown Parameter

    \(\mu\), the mean incubation period

    \(\mu\), population mean

    Point Estimate

    \(\bar{x}_i=5\), the mean incubation period in the sample of size \(n=10\)

    \(\bar{x}_i\), the mean of a random sample of size \(n\)

    Confidence Level

    (of the point estimate)

    0%

    0%

    Confidence Level

    (for a new interval estimate)

    \(CL=90\%\)

    \(\alpha=0.10\)

    \(\alpha/2=0.05\)

    \((1-\alpha)100\%\)

    \(\alpha\)

    \(\alpha/2\)

    Critical Value(s) When \(df=9\): \(t_{\alpha/2}=t_{0.05}=1.83\) \(t_{\alpha/2}\) with \(df=n-1\)

    Margin of Error

    \(ME=1.83\cdot\dfrac{2}{\sqrt{10}}=1.16\)

    \(ME=t_{\alpha/2}\dfrac{s}{\sqrt{n}}\)

    Lower Bound

    \(LB=5-1.16=3.84\)

    \(LB=\bar{x}_i-ME\)

    Upper Bound

    \(UB=5+1.16=6.16\)

    \(UB=\bar{x}_i+ME\)

    Interpretation We are \(90\%\) confident that the average incubation period of the novel coronavirus is between 3.84 and 6.16 days. We are \((1-\alpha)100\%\) confident that the unknown population mean \(\mu\) is between LB and UB.

    We are \(90\%\) confident that the average incubation period of the novel coronavirus is between 3.84 and 6.16 days.


    10.2: The One Mean T Procedure is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?